La base du triangle isocèle est le côté opposé au sommet principal (en face). La base est le seul côté qui ne touche pas le sommet principal. [AC] est le côté opposé au sommet principal. La base du triangle isocèle est donc [AC].
AB = AC. BC est la base du triangle. La médiane (d) part de l'angle primordial et coupe la base BC perpendiculairement. (d) est aussi la bissectrice qui sépare l'angle A en deux parts égales.
La formule pour calculer l'aire A d'un triangle de base b et de hauteur h est : A = b×h2.
Rappelons ici le théorème de Pythagore. Selon Pythagore, dans un triangle rectangle abc, c étant l'hypoténuse (le plus long côté), on a l'équation suivante : a2 + b2 = c2. C'est cette équation qui va nous permettre de trouver la hauteur de notre triangle !
Un triangle isocèle a deux côtés de même longueur et deux angles de même mesure. Dans un triangle rectangle isocèle, cela signifie que la base est également égale à la moitié de l'hypoténuse. Par exemple, si l'hypoténuse mesure 8 cm, alors la base mesure 4 cm.
Un triangle isocèle possède deux côtés égaux et deux angles égaux.
Un triangle rectangle isocèle tracé à la main. Un triangle rectangle isocèle est un triangle ayant un angle droit et dont deux côtés sont de la même longueur. Un triangle ABC est rectangle et isocèle lorsque la longueur du côté [AB] est égale à la longueur du côté [AC] et que l'angle A vaut 90°.
Si, au contraire, tu as l'aire du triangle ainsi que la longueur de sa base, la formule pour trouver la hauteur du triangle est la suivante : La hauteur est égale à 2 fois l'aire du triangle divisé par la base du triangle.
Aire = √p(p-a)(p-b)(p-c)
Où a, b et c sont les longueurs des côtés du rectangle et où p est la moitié du périmètre du triangle.
En utilisant le théorème de Pythagore : Si un triangle est rectangle, alors le carré de l'hypoténuse est égal à la somme des carrés des côtés de l'angle droit. Si ABC est un triangle rectangle en A, alors BC² = AB² + AC². En utilisant le cosinus, le sinus ou la tangente d'un angle aigu d'un triangle rectangle.
1°) Soit un triangle ABC rectangle en A et tel que AB = 15 cm et BC = 18,75 cm. On veut calculer la mesure exacte de la distance AC. [AB] et [AC] sont les côtés de l'angle droit, [BC] est l'hypoténuse. Nous pouvons appliquer le théorème de Pythagore et écrire : BC2 = AB2 + AC2.
Ce triangle est droit en C. Pour calculer son aire, il faut multiplier les deux côtés issus de l'angle droit, c'est-à-dire les côtés AC et BC. Il faudra ensuite diviser le résultat obtenu par 2.
Le coté [BC] s'appelle la base. Propriétés : Si un triangle est isocèle alors ses deux angles à la base sont égaux.
Comme indiqué précédemment, calculer l'hypoténuse du triangle isocèle équivaut à calculer la longueur de l'un des deux cathets (AC ou CB). Nous divisons la base AB par 2 et obtenons: AH = AB / 2 = 2 cm. En appliquant le théorème de Pythagore, nous avons: AC =? (AH² + CH²) =? (2² + 6²) =? 40 = 6,32 cm.
Comme on connaît les longueurs des trois côtés du triangle, on peut utiliser la formule de Héron pour déterminer son aire. Selon la formule de Héron, l'aire, 𝐴 , d'un triangle de côtés de longueurs 𝑎 , 𝑏 et 𝑐 est 𝐴 = √ 𝑑 ( 𝑑 − 𝑎 ) ( 𝑑 − 𝑏 ) ( 𝑑 − 𝑐 ) , où 𝑑 est le demi-périmètre du triangle.
Il suffit de soustraire de 180° la mesure de l'angle du sommet principal, puis de diviser le résultat par 2. Dans ce triangle isocèle, A est le sommet principal et [BC] est la base. Chaque angle à la base doit mesurer 63° pour que la somme des angles soit égale à 180°. 54° + 63° + 63° = 180°.
L'aire de la base, généralement notée Ab, est la surface occupée par la ou les figures servant de base aux différents solides. L'aire latérale, généralement notée AL, est la surface occupée par les figures qui ne servent pas de bases aux solides.
Une médiane est un segment qui relie le sommet d'un triangle au milieu du côté opposé à ce sommet.
Un triangle rectangle est un triangle dont l'un des angles mesure 90° et est donc un angle droit. Le côté opposé à cet angle droit est appelé l'hypoténuse.
Si l'unité sur les deux axes est le centimère, on peut vérifier les calculs de longueur sur la figure. A. BA = BC, donc ABC est isocèle en B. donc ABC est un triangle rectangle en B d'après la réciproque du théorème de Pythagore.
Par conséquent, AB=AC si et seulement si le point A se projette orthogonalement sur le milieu du segment [BC]. Ou encore : le triangle ABC est isocèle en A si le point A appartient à la médiatrice du segment [BC]. Le triangle ABC est isocèle en A si les angles en B et en C ont même mesure.
Cas d'un triangle isocèle :
Dans tout triangle isocèle, les deux angles à la base sont égaux. Donc \hat{U} = \hat{I} = 47°. On en déduit \hat{O} : \hat{O} = 180° – (47° + 47°) = 86°.
Règle. La somme des angles intérieurs d'un triangle est toujours égale à 180∘ . Ainsi, il est possible de déduire la mesure du troisième angle lorsque les mesures des deux autres sont connues.
Pour calculer l'aire d'un triangle quelconque, on multiplie la base par la hauteur puis on divise par 2.