Pour démontrer qu'une matrice A est diagonalisable, la méthode la plus classique consiste à calculer le polynôme caractéristique χA et à le factoriser pour déterminer les valeurs propres de A . Si χA n'est pas scindé, A n'est pas diagonalisable. Si χA est scindé à racines simples, A est diagonalisable.
Le rang d'une matrice est égal au nombre de ses lignes sauf si l'une d'entre elles est combinaison linéaire des autres. On dira qu'une matrice est facile si l'une de ses colonnes a tous ses nombres nuls sauf exactement un.
Une condition (nécessaire et) suffisante pour qu'un ensemble de matrices diagonalisables soit simultanément diagonalisable est que toutes les matrices de l'ensemble commutent deux à deux. qui est scindé à racines simples sur le corps des complexes. Donc chaque matrice de la représentation est diagonalisable.
1. Une matrice A est diagonalisable si et seulement si la somme des dimensions des sous-espaces propres est égale à l'ordre de la matrice. 2. Si une matrice carrée A d'ordre n admet n valeurs propres différentes, alors A est diagonalisable.
Le déterminant d'une matrice diagonale est le produit des coefficients diagonaux. Le produit de deux matrices diagonales est une matrice diagonale. est dite diagonalisable si elle est semblable à une matrice diagonale.
La matrice carrée nulle est non-inversible et diagonalisable. Elle est même diagonale. En revanche une matrice carrée est inversible si et seulement si elle n'admet pas 0 pour valeur propre.
Une matrice scalaire est une matrice diagonale (à coefficients dans un anneau) dont tous les coefficients diagonaux sont égaux, c'est-à-dire de la forme λIn où λ est un scalaire et In la matrice identité d'ordre n.
Pour diagonaliser une matrice, une méthode de diagonalisation consiste à calculer ses vecteurs propres et ses valeurs propres. La matrice diagonale D est composée des valeurs propres. La matrice inversible P est composée des vecteurs propres dans le même ordre de colonnes que les valeurs propres associées.
Déterminant : si n ≥ 2, det(comA) = (detA)n–1. Comatrice de la comatrice : si n ≥ 2, com(comA) = (detA)n–2 A. Si P(X) = det(A – X In) est le polynôme caractéristique de A et si Q est le polynôme défini par Q(X) = (P(0) – P(X))/X, alors : t(comA) = Q(A).
Le déterminant d'une matrice diagonale ou triangulaire (supérieure ou inférieure) est égal au produit des termes de la diagonale principale. Comme pour les déterminants d'ordre 2, la valeur du déterminant est égale au produit des termes de la diagonale principale.
Matrice diagonale
La diagonale principale d'une matrice carrée (ou d'un tableau carré de nombres) est l'ensemble des éléments dont l'indice de ligne et l'indice de colonne sont égaux. Une matrice est diagonale si tous les termes en dehors de sa diagonale principale dont nuls.
La diagonalisation d'un endomorphisme permet un calcul rapide et simple de ses puissances et de son exponentielle, ce qui permet d'exprimer numériquement certains systèmes dynamiques linéaires, obtenus par itération ou par des équations différentielles.
2. A est diagonalisable s'il existe une matrice inversible P telle que P−1AP = ∆, où ∆ est diagonale. 3. v = (x y ) , v = (0 0 ) est un vecteur propre pour A, de valeur propre λ, si Av = λv.
Additionnez les trois cofacteurs.
Trois cofacteurs, un pour chaque coefficient d'une seule ligne (ou colonne), que vous additionnez et vous aurez le déterminant de la matrice 3 x 3. Pour notre exemple, cela donne : (-34) + (120) + (-12) = 74.
Conditions de trigonalisation
Une matrice est trigonalisable si et seulement si son polynôme caractéristique est scindé dans K[X]. En particulier, si K est algébriquement clos, toute matrice carrée à coefficients dans K est trigonalisable et donc aussi tout endomorphisme d'un K-espace vectoriel de dimension finie.
Une matrice réelle dont toutes les colonnes sont orthogonales deux à deux est inversible si et seulement si elle n'a aucune colonne nulle. Un produit de deux matrices carrées est inversible si et seulement si les deux matrices en facteur le sont aussi.
Comment calculer les vecteurs propres d'une matrice ? Pour trouver/déterminer des vecteurs propres , prendre M une matrice carré d'ordre n et λi ses valeurs propres. Les vecteurs propres sont les solutions du système (M−λIn)→X=→0 ( M − λ I n ) X → = 0 → avec In la matrice identité.
Matrices symétriques réelles
Le théorème spectral en dimension finie en déduit que toute matrice symétrique à coefficients réels est diagonalisable à l'aide d'une matrice de passage orthogonale, car les valeurs propres d'un endomorphisme autoadjoint sont réelles et ses sous-espaces propres sont orthogonaux.
Définition Une matrice est dite diagonalisable si elle est semblable à une matrice diagonale. En particulier, toute matrice diagonale est diagonalisable.
la matrice nulle est diagonale puisque toutes les valeurs qui ne sont pas sur la diagonale sont nulles .....
−a 1+a−X ∣ ∣ ∣ ∣ = −X(1+a−X)+a = X2 −(1+a)X +a. La matrice A est diagonalisable sur R si le polynôme PA admet deux racines distinctes dans R. En effet, si PA admet une racine double r et A diagonalisable, alors l'endomorphisme de matrice A est égal à rIdE, ce qui n'est pas le cas.