En arithmétique, les deux opérations considérées lorsqu'on parle de distributivité sont l'addition et la multiplication. La multiplication est distributive par rapport à l'addition : x × (y + z) = (x × y) + (x × z)
k × (a + b) = k × a + k × b. D'après ce qui précède, et en généralisant à la soustraction, on obtient les formules de distributivité suivantes : k × (a + b) = k × a + k × b ; écriture simplifiée : k(a + b) = ka + kb.
Distribuer la multiplication
Les deux écritures sont équivalentes. Lorsqu'un nombre est collé à une parenthèse, on développe l'expression en multipliant le nombre par chaque terme de la parenthèse. La multiplication est ainsi distribuée au sein de la parenthèse, c'est ce qu'on appelle la distributivité simple.
On dit que la multiplication est distributive par rapport à l'addition : plutôt que de multiplier une somme par un nombre, on peut tout aussi bien distribuer cette multiplication aux termes de la somme puis effectuer cette somme. Plutôt que de calculer la somme de 3 et 4, puis multiplier cette somme par 5…
En analyse mathématique, une distribution (également appelée fonction généralisée) est un objet qui généralise la notion de fonction et de mesure.
La règle mathématique qui permet de décomposer une multiplication s'appelle la distributivité. Voici cette règle : on ne change pas le résultat d'une multiplication si on réécrit l'un des facteurs sous la forme de la somme de deux nombres.
Le signe de la multiplication entre 2 parenthèses n'est pas obligatoire. Lorsque 2 parenthèses sont collées ensemble, on développe l'expression en multipliant: Le 1er terme de la 1ère parenthèse avec chaque terme de la 2ème parenthèse. Le 2ème terme de la 1ère parenthèse avec chaque terme de la 2ème parenthèse.
Factoriser une expression, c'est transformer une somme ou une différence en un produit. Il faut donc à la base avoir au moins deux termes que l'on additionne ou soustrait. Par exemple dans 8x + 5, les deux termes sont 8x et 5. Dans 6(x+4)2 – 9, les deux termes sont 6(x+4)2 et 9.
Règle. On sait que la multiplication est distributive par rapport à l'addition , c'est-à-dire que : k × (a + b) = k × a + k × b. pour factoriser, c'est-à-dire transformer une somme en produit.
La distributivité est la propriété d'une opération qui permet de distribuer une opération sur les autres termes du calcul. Cette propriété s'applique à la multiplication. Ainsi, il est possible de distribuer une multiplication sur une addition ou une soustraction par exemple.
La propriété de distributivité permet de faciliter les calculs. Elle permet surtout d'être plus efficace en calcul mental. Une opération notée ⊗ se distribue sur une opération notée ⊕ si, quels que soient les nombres a, b et c, on a : a ⊗ (b ⊕ c) = (a ⊗ b) ⊕ (a ⊗ c). Cette propriété s'appelle la distributivité.
De même, en appliquant la formule de distributivité simple deux fois, on a : (a + b)(c + d) = a × c + a × d + b × c + b × d = ac + ad + bc + bd pour tous les nombres a, b, c et d.
Les compétences à valider en mathématiques en fin de 3ème
Le programme au collège de maths est divisé en 5 parties, les nombres et calculs, l'organisation et la gestion de données et de fonctions, les grandeurs et les mesures, l'espace et la géométrie en enfin l'algorithmique et la programmation.
Formule. k × A + k × B = k × (A + B). Pour réussir à factoriser, il faut donc identifier le facteur commun k, puis A et B. Ensuite, il faut remplacer les valeurs trouvées dans la formule.
« Terme » désigne chacun des éléments intervenant dans un rapport, une addition, une soustraction, une suite, une proportion ou une fraction. Par exemple : Admettons la suite 1, 2, 3, 4. Les 4 chiffres sont des termes. Dans le rapport 4/5, 4 et 5 sont aussi des termes.
Le calcul littéral est un calcul avec des nombres et des lettres où chaque lettre désigne une inconnue (nombre qu'on ne connaitpas, dont on ne sait pas la valeur). Voici la formule de base du calcul littéral : ka+kb = k(a+b) ou (a+b)k.
Propriété 1 : Les multiplications et divisions sont prioritaires sur l'addition et la soustraction, on doit donc les effectuer en premier. Propriété 2 : Si une expression ne contient que des additions et soustractions, on effectue les calculs de gauche à droite.
Diviser deux fractions, c'est multiplier la première fraction par l'inverse de la deuxième. Il suffit donc de trouver l'inverse (permuter le numérateur et le dénominateur) de la seconde fraction puis de procéder comme pour une multiplication.
Développer c'est transformer un produit en somme. Factoriser c'est transformer une somme en produit en faisant apparaître son facteur commun. Réduire c'est effectuer dans une expression littérales des calculs possibles. On peut utiliser la distributivé de la multiplication.