Condition : la division de deux matrices n'est possible que si la deuxième est inversible (donc carrée) et que la première est carrée. Si A et B sont deux matrices répondant aux critères ci-dessus, alors A / B = A x (1 / B) = A x B-1.
Deux matrices A = ( a i k ) de type ( , ) et B = ( b k j ) de type ( , ) peuvent se multiplier. Le produit de ces deux matrices est une matrice C = ( c i j ) de type ( , ), où l'élément c i j de est obtenu en sommant les produits des éléments de la ième ligne de par les éléments de la jème colonne de .
Pour additionner deux matrices, il suffit d'additionner les éléments occupant les mêmes positions dans chaque matrice. La somme obtenue est une nouvelle matrice. Pour soustraire deux matrices, il suffit de soustraire aux éléments de la première matrice les éléments occupant la même position dans la deuxième matrice.
Le produit de deux matrices n'est défini que si le nombre de colonnes de la deuxième matrice est égal au nombre de lignes de la première et le produit d'une matrice (n,m) par une matrice (m,p) est une matrice (n,p).
Pour : Soit la matrice d'ordre 2 : A 2 = ( a i j ) = ( a 11 a 12 a 21 a 22 ) . Si on effectue un développement suivant la 1ère ligne, nous avons : | A 2 | = | a 11 a 12 a 21 a 22 | = a 11 Δ 11 + a 12 Δ 12 = a 11 ( − 1 ) 1 + 1 | M 11 | + a 12 ( − 1 ) 1 + 2 | M 12 | .
Pour diagonaliser une matrice, une méthode de diagonalisation consiste à calculer ses vecteurs propres et ses valeurs propres. La matrice diagonale D est composée des valeurs propres. La matrice inversible P est composée des vecteurs propres dans le même ordre de colonnes que les valeurs propres associées.
Déterminant : si n ≥ 2, det(comA) = (detA)n–1. Comatrice de la comatrice : si n ≥ 2, com(comA) = (detA)n–2 A. Si P(X) = det(A – X In) est le polynôme caractéristique de A et si Q est le polynôme défini par Q(X) = (P(0) – P(X))/X, alors : t(comA) = Q(A).
il y a des diviseurs de O: si un produit de deux matrices est nul (toutes les composantes sont nulles) il peut arriver qu'aucune des deux matrices ne soit nulle.
Une matrice réelle dont toutes les colonnes sont orthogonales deux à deux est inversible si et seulement si elle n'a aucune colonne nulle. Un produit de deux matrices carrées est inversible si et seulement si les deux matrices en facteur le sont aussi.
Il est nécessaire, pour pouvoir faire le produit de deux matrices A et B, que le nombre de colonnes de la matrice A soit égal au nombre de lignes de la matrice B. Ainsi, les dimensions des matrices A et B doivent être respectivement (n,m) et (m,p).
La matrice M est diagonalisable si et seulement si la somme des multiplicités géométriques est égale à la taille de M. Or chaque multiplicité géométrique est toujours inférieure ou égale à la multiplicité algébrique correspondante.
Aujourd'hui, les matrices sont souvent utilisées dans des domaines tels que l'administration, la psychologie, la génétique, les statistiques et l'économie. Avant d'étudier les opérations associées aux matrices, débutons par l'identification et la définition des termes associés aux matrices.
Une matrice A de Mn(K) M n ( K ) est dite inversible s'il existe B∈Mn(K) B ∈ M n ( K ) tel que AB=BA=In. A B = B A = I n . Une matrice B vérifiant la relation précédente est unique, elle s'appelle matrice inverse de A et se note A−1 .
Additionnez les trois cofacteurs.
Trois cofacteurs, un pour chaque coefficient d'une seule ligne (ou colonne), que vous additionnez et vous aurez le déterminant de la matrice 3 x 3. Pour notre exemple, cela donne : (-34) + (120) + (-12) = 74.
Un intérêt principal des matrices est qu'elles permettent d'écrire commodément les opérations habituelles de l'algèbre linéaire, avec une certaine canonicité.
Si A a autant de colonnes que B de lignes et B autant de colonnes que C de lignes, alors les deux produits (AB)C et A(BC) sont bien définis et égaux. On les écrit tous les deux ABC. Et ça se prouve ! C2 = (A+B)(A+B) = A(A+B)+B(A+B) = A2 +AB +BA+B2 C2 = (A+B)(A+B)=(A+B)A+(A+B)B = A2 +BA+AB+B2.
Pour que le produit de deux matrices soit défini, il faut que le nombre de colonnes de la première matrice soit égal au nombre de lignes de la deuxième. Si la matrice produit existe, elle a le même nombre de lignes que la première matrice et le même nombre de colonnes que la deuxième.
'det' représente le déterminant. M(i,j) M ( i , j ) est la sous-matrice carrée de taille n - 1 (M étant de taille n × n), obtenue à partir de M en supprimant la i-ème ligne et la j-ème colonne. le déterminant de M(i,j) est appelé 'mineur' de la matrice M.
Comment calculer les mineurs d'une matrice ? Pour une matrice carrée d'ordre 2, trouver les mineurs c'est calculer la matrice des cofacteurs sans les coefficients. Pour les matrices de taille supérieure comme 3x3, calculer les déterminants de chaque sous-matrice.
Propriété : Deux matrices sont égales si, et seulement si, elles ont la même taille et ont les coefficients égaux placés aux mêmes positions. Définition : Soit A et B deux matrices de même taille.
Si A est une matrice carrée inversible d'ordre n, alors le système d'équation dont l'écriture matricielle est AX = B admet une unique solution : X = A-1B. Exemple : Le système a pour écriture matricielle AX = B avec . Le déterminant de A est non nul, A est donc inversible.
Imaginons que l'on note C la matrice A x B : C = A x B. Le coefficient ci,j de la matrice C sera calculé en multipliant le ième ligne de la matrice de gauche avec la jème colonne de la matrice de droite. On multiplie tout simplement terme à terme chaque coefficient de la ligne et de la colonne.