Pour factoriser une expression de la forme a²+2ab+b², on utilise l'identité remarquable (a+b)². Par exemple, x²+10x+25 peut être écrit sous la forme (x+5)². Cette méthode est basée sur la reconnaissance de l'identité remarquable (a+b)²=a²+2ab+b² (qu'on peut toujours vérifier en développant le produit (a+b)(a+b)).
Donc quels que soient a et b, a²-b² = (a+b)(a-b). Factoriser une somme ou une différence c'est l'écrire sous forme d'un produit. La formule ci-dessus permet de factoriser une différence de deux carrés. Par exemple, x²-25 = x²-5² = (x + 5)(x - 5).
a2 - b2 = (a - b) (a + b)
L'aire du rectangle allongé est donc égale à la différence des aires de côtés a et b.
Pour parvenir à factoriser une expression en un produit de facteurs, il faut d'abord chercher si l'on peut isoler un facteur commun. Par exemple on va chercher le terme commun qui permet de multiplier le premier terme par la deuxième expression : 4x+20 par exemple, est égal à 2 x (2x + 10).
Pour factoriser une somme, il faut repérer le facteur commun aux différents termes de la somme. A : le facteur commun est x ; si l'on développe x(x − 5), on retrouve bien x2 − 5x. B : le facteur commun est 2x ; si l'on développe 2x(x − 3 + y), on retrouve bien 2x2− 6x + 2xy.
Action de la mettre sous la forme de facteurs, un facteur étant un nombre (ou un groupe de nombres) qui multiplie un ou plusieurs autres nombres (ou groupes de nombres). Transformer une somme algébrique en un produit. Exemple : La factorisation doit mettre en évidence au moins 2 expressions multipliées.
Définition : Factoriser une expression, c'est transformer une somme ou une différence en produit.
examiner s'il s'agit de sommes ou de produits et compter les termes respectivement les facteurs). Les trois méthodes de factorisation qu'il faut connaître sont : la mise en évidence, les produits (identités) remarquables et le groupement de termes.
Propriété Soit f ( x ) = a x 2 + b x + c où a ≠ 0 un polynôme du second degré et Δ = b 2 − 4 a c son discriminant. Si : se factorise sous la forme f ( x ) = a ( x − x 1 ) ( x − x 2 ) où et sont les deux racines du polynôme.
Une différence de carrés se factorise grâce à l'identité remarquable a 2 − b 2 = ( a − b ) ( a + b ). Plus généralement, une différence de puissance peut se factoriser sous la forme a n − b n = ( a − b ) × (∑ k =0 n −1 a n −1− k b k ).
Pour factoriser une expression de la forme a²+2ab+b², on utilise l'identité remarquable (a+b)². Par exemple, x²+10x+25 peut être écrit sous la forme (x+5)². Cette méthode est basée sur la reconnaissance de l'identité remarquable (a+b)²=a²+2ab+b² (qu'on peut toujours vérifier en développant le produit (a+b)(a+b)).
Pour rendre compte de cette performance thermique, le facteur d'ombrage se présente sous forme de rapport : facteur B = gain solaire résultant de l'éclairement direct du soleil à travers une paroi vitrée / gain solaire dû à l'éclairement passant à travers une paroi vitrée claire de 3 mm d'épaisseur.
On utilise souvent aussi celles de degré 3 : (a+b)3=a3+3a2b+3ab2+b3, ( a + b ) 3 = a 3 + 3 a 2 b + 3 a b 2 + b 3 , (a−b)3=a3−3a2b+3ab2−b3, ( a − b ) 3 = a 3 − 3 a 2 b + 3 a b 2 − b 3 , a3−b3=(a−b)(a2+ab+b2).
On reconnaît une nouvelle somme remarquable, l'équation s'écrit encore : Un produit a. b de deux nombres a et b est nul si, et seulement si, a ou b est nul.
C'est donc une équation du second degré. Le nombre de solutions de l'équation ax^2+bx+c=0 (avec a\neq 0), dépend du signe du discriminant \Delta : Si \Delta<0, l'équation n'admet aucune solution réelle. Si \Delta=0, l'équation admet une unique solution (dite « double ») : x_0=\dfrac{-b}{2a}.
➡️ Par exemple, pour un polynôme du second degré P(x) = ax² + bx + c, les racines peuvent être trouvées en résolvant l'équation quadratique ax² + bx + c = 0 à l'aide de la formule quadratique. Autrement dit, un réel a est un racine de P si P(a) = 0. On dit aussi que a est solution de l'équation P(x) = 0.
Factoriser une expression, c'est transformer une somme ou une différence en un produit. Il faut donc à la base avoir au moins deux termes que l'on additionne ou soustrait. Par exemple dans 8x + 5, les deux termes sont 8x et 5. Dans 6(x+4)2 – 9, les deux termes sont 6(x+4)2 et 9.
Factoriser une expression numérique ou littérale, c'est l'écrire sous la forme d'un produit. L'expression (3x – 7)(2x + 4) est factorisée car elle n'est composée que d'un seul terme qui comporte deux facteurs. Les expressions possèdent deux termes (séparés par un + ou un – ) comportant chacun deux facteurs.
L'identité a^3 - b^3 = (a - b)(a² + ab + b²).
Factoriser une expression littérale, c'est transformer une somme ou une différence en un produit, c'est l'inverse du développement. A = 5 × ( x + 3 ) On écrit entre parenthèses les deux autres facteurs. Si les produits ne sont pas apparents, il faut les faire apparaître.
Généralement, la factorisation permet de simplifier une expression algébrique afin de résoudre un problème plus facilement. Les facteurs obtenus après la factorisation sont des polynômes de degré inférieur (ou égal) au polynôme de départ.