Pour parvenir à factoriser une expression en un produit de facteurs, il faut d'abord chercher si l'on peut isoler un facteur commun. Par exemple on va chercher le terme commun qui permet de multiplier le premier terme par la deuxième expression : 4x+20 par exemple, est égal à 2 x (2x + 10).
a² + 2ab + b² = (a + b)² a² - 2ab + b² = (a - b)² a² - b² = (a + b)(a - b)
Formule. k × A + k × B = k × (A + B). Pour réussir à factoriser, il faut donc identifier le facteur commun k, puis A et B. Ensuite, il faut remplacer les valeurs trouvées dans la formule.
La méthode de la factorisation
Factoriser une expression, cela signifie la transformer en produit de facteurs. Il existe deux méthodes pour factoriser une expression : Utiliser une identité remarquable ; Utiliser la distributivité.
Pour factoriser une expression de la forme a²+2ab+b², on utilise l'identité remarquable (a+b)². Par exemple, x²+10x+25 peut être écrit sous la forme (x+5)². Cette méthode est basée sur la reconnaissance de l'identité remarquable (a+b)²=a²+2ab+b² (qu'on peut toujours vérifier en développant le produit (a+b)(a+b)).
( a + b ) ( a − b ) = a 2 − b 2 . On utilise souvent aussi celles de degré 3 : (a+b)3=a3+3a2b+3ab2+b3, ( a + b ) 3 = a 3 + 3 a 2 b + 3 a b 2 + b 3 , (a−b)3=a3−3a2b+3ab2−b3, ( a − b ) 3 = a 3 − 3 a 2 b + 3 a b 2 − b 3 , a3−b3=(a−b)(a2+ab+b2).
Donc quels que soient a et b, a²-b² = (a+b)(a-b). Factoriser une somme ou une différence c'est l'écrire sous forme d'un produit. La formule ci-dessus permet de factoriser une différence de deux carrés. Par exemple, x²-25 = x²-5² = (x + 5)(x - 5).
Définition : Factoriser une expression, c'est transformer une somme ou une différence en produit.
Petite astuce vous pouvez trouver le facteur commun entre 32 et 16 en divisant le plus gros membre par le plus petit -> 32/16 = 2 donc on peut prendre 16 pour facteur commun. Pour "x" il y aura un seul 16 (1x16=16) , et pour "y" il y en aura deux ( 2x16=32).
Factoriser une expression numérique ou littérale, c'est l'écrire sous la forme d'un produit. L'expression (3x – 7)(2x + 4) est factorisée car elle n'est composée que d'un seul terme qui comporte deux facteurs. Les expressions possèdent deux termes (séparés par un + ou un – ) comportant chacun deux facteurs.
Factoriser une expression littérale, c'est transformer une somme ou une différence en un produit, c'est l'inverse du développement. A = 5 × ( x + 3 ) On écrit entre parenthèses les deux autres facteurs. Si les produits ne sont pas apparents, il faut les faire apparaître.
Pour simplifier l'écriture d'une expression littérale, on peut supprimer le symbole × devant une lettre ou une parenthèse. Remarque : On ne peut pas supprimer le signe × entre deux nombres. Exemple : Simplifie l'expression suivante : A = – 5 × x + 7 × (3 × x – 2) × (– 4).
Pour obtenir la factorisation première de 30 , on devra factoriser le nombre 6 . 30=5×6⇒30=5×2×3 30 = 5 × 6 ⇒ 30 = 5 × 2 × 3 Cette nouvelle factorisation est première, car tous les facteurs sont premiers. Comme il est mentionné dans l'encadré Important ci-haut, cette factorisation est unique.
Développer une expression consiste à l'écrire sous la forme d'une somme ou d'une soustraction. Cela revient à transformer une multiplication (ou un produit) de plusieurs termes semblables en une opération de sorte que l'on obtienne des formules de type : k x (a + b) = k x a + k x b.
Factoriser une expression algébrique
Pour cela on peut chercher un facteur commun aux différents termes de la somme et utiliser en sens inverse les règles précédemment notées. ka + kb = k × a + k × b = k × (a + b) ka - kb = k × a - k × b = k × (a - b) On peut aussi reconnaitre une identité remarquable.
Factoriser un trinôme s'il est le développement d'un carré
Pour développer le carré d'une somme ou le carré d'une différence, on utilise les identités : ( a + b ) 2 = a 2 + 2 a b + b 2 ( a − b ) 2 = a 2 − 2 a b + b 2
Factoriser une expression littérale, c'est transformer une somme ou une différence en un produit, c'est l'inverse du développement. A = 5 × ( x + 3 ) On écrit entre parenthèses les deux autres facteurs. Si les produits ne sont pas apparents, il faut les faire apparaître.
Réduire une somme, c'est l'écrire avec le moins de termes possibles (en regroupant les termes de même espèce). Réduire un produit, c'est l'écrire avec le moins de facteurs possibles. B = 5 × 3 × x × y × 4 × x 2 Je réordonne les facteurs, lettres à droite.
Pour parvenir à factoriser une expression en un produit de facteurs, il faut d'abord chercher si l'on peut isoler un facteur commun. Par exemple on va chercher le terme commun qui permet de multiplier le premier terme par la deuxième expression : 4x+20 par exemple, est égal à 2 x (2x + 10).
a2 - b2 = (a - b) (a + b)
L'aire du rectangle allongé est donc égale à la différence des aires de côtés a et b.
Une différence de carrés se factorise grâce à l'identité remarquable a 2 − b 2 = ( a − b ) ( a + b ). Plus généralement, une différence de puissance peut se factoriser sous la forme a n − b n = ( a − b ) × (∑ k =0 n −1 a n −1− k b k ).
(a) a3 + b3 = (a + b)(a2 − ab + b2), (b) a3 − b3 = (a − b)(a2 + ab + b2).