Pour déterminer un antécédent d'un nombre à l'aide d'un tableau, il suffit de repérer ce nombre dans la deuxième ligne du tableau ( f ( x ) f(x) f(x)) et de lire son antécédent sur la première ligne ( x x x).
On dit que l'image de 5 par la fonction f est 25. Cette image est unique. L'image de 5 par la fonction f se note f(5). On dit aussi que 5 est un antécédent de 25 par la fonction f.
Une fonction affine est définie par son coefficient a et le nombre b. Il suffit ainsi de connaître les valeurs de a et b pour être en mesure de calculer l'image et l'antécédent de tout nombre par la fonction. Soit la fonction affine définie par : f\left(x\right)=2x-4.
Le seul antécédent de 8 par la fonction f est donc x = 4.
1. Fait antérieur sur lequel on appuie un raisonnement, une conclusion : Invoquer un antécédent. 2. Élément qui précède et auquel se rapporte un pronom relatif (par exemple homme dans l'homme dont je parle).
Lire les antécédents sur un graphe
Pour lire les antécédents, la marche à suivre est la suivante: On trace une droite horizontale à partir de la valeur de l'image dont on cherche l'antécédent. On note toutes les intersections entre cette droite et le graphe de f.
C'est l'outil mathématique qui, à un nombre, fait correspondre son carré. On dit que 36 est l'image de 6 par la fonction f. Cette image est unique. On dit aussi que 6 est l'antécédent de 36 par la fonction f.
Calculer l'antécédent de 22 par la fonction f. Réponse : pour déterminer l'antécédent d'un nombre par une fonction affine, il faut résoudre une équation. Soit x l'antécédent cherché, on a f(x) = 22 autrement dit 7x - 6 = 22, soit 7x = 28 et donc x=287 = 4, donc l'antécédent de 22 par f est 4.
Le seul antécédent de 12 par la fonction f est donc x = 4.
Exemple : Pour déterminer des antécédents éventuels du nombre 4 par la fonction affine définie sur par f ( x ) = 4 x + 3 , on résout l'équation ( E ) f ( x ) = 4 .
Dans une fonction, l'antécédent est le nombre x qui sert de base au calcul de l'image y par la fonction f.
La représentation graphique d'une fonction f est l'ensemble des points de coordonnées (x;f(x)). Autrement dit, l'antécédent x se lit sur l'axe des abscisses et l'image f(x) se lit sur l'axe des ordonnées.
L'antécédent de 20 par la fonction g est 3. Lire des images sur une représentation graphique. On cherche l'image du nombre 2. on repère le nombre 2 sur l'axe des abscisses et on dessine un chemin vertical jusqu'à la courbe.
L'antécédent de −2 par la fonction f est −3. Soit f la fonction définie sur \mathbb{R} par f\left(x\right)=\left(3x+1\right)^{2}.
Le seul antécédent de 4 par f est -2.
2) Nous voyons graphiquement que (3) = 9 et que (−3) = 9 Donc les antécédents de 9 par sont 3 et -3 .
Quels sont les antécédents de 3 par la fonction f ? L'antécédent de 3 par f est 1. L'antécédent de 3 par f est 3.
Quel est l'antécédent de -11 par la fonction f ? L'antécédent de −11 par la fonction f est 2. L'antécédent de −11 par la fonction f est -\dfrac{11}{7}.
Pour trouver les antécédents de 10 par la fonction f(x)=x²+1, on résout l'équation x²+1=10. On obtient d'abord x²=10-1, puis x²=9, puis x²-9=0, puis x²-3²=0, puis (x+3)(x-3)=0, puis x+3=0 ou x-3=0.
L'antécédent est un groupe de mots. Il est suivi d'un pronom relatif qui introduit une proposition relative. Ce groupe de mots est remplacé et repris par ce pronom relatif. Celui-ci fait donc la liaison entre l'antécédent et la proposition relative.
, on appelle antécédent (par f) d'un élément y de F tout élément dont l'image par f est y, c'est-à-dire tout élément x de E tel que f(x) = y.
Antécédent : nom précédé d'un déterminant indéfini ou numéral. Dans tous les autres cas, l'usage est indécis et les deux accords sont admis. C'est notamment le cas lorsque l'antécédent de qui est un nom précédé d'un déterminant indéfini. Par exemple : un, une, des, certains, aucune.
Pour calculer l'image d'un nombre par une fonction f [f : x → f(x)], il faut tout simplement remplacer x par la valeur de ce nombre.
La proposition subordonnée relative est complément de son antécédent : « dont je vous ai parlé » est complément de l'antécédent « maison ». La proposition subordonnée relative est introduite par un pronom relatif : qui : La fenêtre qui donne sur la rue est ouverte. que : Le volet que tu as repeint est sec.