On calcule la cosécante de l'angle de sommet La cosécante est l'inverse du sinus. Le sinus est le quotient de la longueur du côté opposé par celle de l'hypoténuse, donc la cosécante est le quotient de la longueur de l'hypoténuse par celle du côté opposé.
Le plus simple est de transformer l'équation par une égalité entre deux cosinus en remplaçant le sinus. On utilise pour cela une formule d'angles associés, par exemple sin(y)=cos(π2−y).
En d'autres mots, il suffit de déplacer la fonction cosx de π2 unité vers la droite pour obtenir la fonction sinx. Ainsi, on en déduit l'égalité suivante. sinx=cos(x−h)sinx=cos(x−π2) ( x − h ) sin ( x − π 2 ) Cette même égalité est utilisée lorsqu'on travaille avec les identités trigonométriques.
En d'autres termes, le sinus d'un angle est négatif pour tout angle du troisième ou du quatrième quadrant.
Sinus = côté opposé / hypoténuse.
Toujours pour découvrir la mesure de notre angle A, prenons son hypoténuse AB, et le côté qui lui est opposé, ici BC. Le sinus sera alors égal à la longueur du côté opposé (on l'appellera o) divisé par celle de l'hypoténuse (h), soit Cosinus A = a ÷ h).
L'hypoténuse est toujours le côté le plus long du triangle rectangle (directement opposé à l'angle droit), le côté opposé est le côté directement opposé à l'angle en question, et le côté adjacent est le côté à côté de l'angle (qui n'est pas l'hypoténuse).
Renvoie l'arcsinus ou le sinus inverse d'un nombre. L'arcsinus est l'angle dont le sinus est l'argument nombre. L'angle renvoyé, exprimé en radians, est compris entre -pi/2 et pi/2.
Le sinus de l'angle droit donne Opposé / Hypoténuse soit Hypoténuse / Hypoténuse = 1. Et le cosinus de l'angle droit donne Adjacent / Hypoténuse soit nul / Hypoténuse = 0 . La tangente, quant à elle, n'est pas définie car cela conduirait a une division par zéro.
La règle d'une fonction sinus est f(x)=asin(b(x−h))+k. f ( x ) = a sin ( b ( x − h ) ) + k .
Pour retenir les trois principales fonctions trigonométriques, vous pouvez mémoriser « soh cah toa » pour sinus = opposé sur hypoténuse (soh), cosinus = adjacent sur hypoténuse (cah)et tangente = opposé sur adjacent (toa).
Cosinus  = Côté adjacent (noté a) / Hypoténuse (noté h). Représentation graphique sur un intervalle de deux périodes de la fonction cosinus. Le cosinus est habituellement cité en deuxième parmi les fonctions trigonométriques.
Définition, dérivation
La fonction sinus, notée sin, est la fonction qui à tout réel x associe le nombre réel sinx. Propriétés : les fonctions sinus et cosinus sont dérivables sur l'ensemble des réels. Pour tout réel x : cos'(x) = − sin(x) et cos'(ax + b) = − a sin(ax + b).
La fonction sinus est dérivable en 0 et sin'(0) = 1.
Le cosinus de x, noté cosx, est l'abscisse de M. Le sinus de x, noté sinx, est l'ordonnée de M. Définition : La fonction cosinus, notée cos, est la fonction qui à tout réel x associe le nombre réel cosx. La fonction sinus, notée sin, est la fonction qui à tout réel x associe le nombre réel sinx.
Calcul du sinus
On met la calculatrice en mode degré ; on tape sin puis 50. L'affichage est : 0,7660444431. Le résultat est : sin 50° = 0,766 (au millième près). Remarque : la démarche est la même pour calculer un cosinus ou une tangente.
Appliquez l'angle de référence en trouvant l'angle avec des valeurs trigonométriques équivalentes dans le premier quadrant. Rendez l'expression négative car le sinus est négatif dans le quatrième quadrant. La valeur exacte de sin(45) est √22 .
On peut donc écrire que le sinus de 30 degrés est égal au côté opposé — c'est 𝑏 — divisé par l'hypoténuse — c'est 𝑐. Puisqu'on a ces valeurs, on peut remplacer 𝑏 par un et 𝑐 par deux, ce qui donne que le sinus de 30 degrés est égal à un sur deux, ou un demi.
La cosécante est l'inverse du sinus. Le sinus est le quotient de la longueur du côté opposé par celle de l'hypoténuse, donc la cosécante est le quotient de la longueur de l'hypoténuse par celle du côté opposé.
On dit alors que les fonctions sinus et cosinus sont des fonctions périodiques de période . En effet, l'enroulement sur le cercle trigonométrique des points de la droite de repère (IK) d'abscisses x et génère le même point M, puisque le périmètre du cercle trigonométrique est égal à 2π.
La courbe de la fonction sinus est symétrique par rapport au centre du repère O. La fonction sinus est impaire, ce qui signifie que pour tout x de : sin(x) = – sin(x).
En géométrie, le calcul du cosinus d'un angle est utilisé en trigonométrie. Il peut servir par exemple à couper un gâteau en plusieurs parts parfaitement égales.
Alors je peux tout simplement te dire : tu utilises le cosinus, le sinus ou la tangente quand tu as les données pour pouvoir les calculer (i.e soit le côté adjacent et l'hypoténuse, soit le côté opposé et l'hypoténuse, soit le côté adjacent et le côté opposé).