La taille de l'effet Il est possible de quantifier l'importance de cette différence à partir du calcul de l'indice eta-carré. La valeur eta-carré indique la présence d'effet de moyenne taille pour le nombre d'heures passées à regarder la télévision (0,05).
Interpréter la valeur t
La valeur t est calculée en divisant la différence mesurée par la dispersion des données de l'échantillon. Plus l'amplitude de t est grande, plus cela plaide contre l'hypothèse nulle. Si la valeur t calculée est supérieure à la valeur t critique, l'hypothèse nulle est rejetée.
Plus la taille d'effet sera forte, plus l'écart à l'hypothèse nulle sera grand et inversement, l'hypothèse nulle correspondant à la nullité de la taille d'effet (ES = 0). La division de la différence entre les deux moyennes par l'écart-type vise à neutraliser l'effet d'un changement d'unités.
Si une variance est nulle, cela veut dire que toutes les observations sont égales à la moyenne, ce qui implique qu'il n'y a aucune variation de celles-ci. Par contre, plus une variance est élévée plus la dispersion des observations est importante ; elle est très sensible aux valeurs extrêmes.
Niveau de signification
Si la valeur p calculée est inférieure à cette valeur, l'hypothèse nulle est rejetée, sinon elle est maintenue. En règle générale, on choisit un niveau de signification de 5 %. alpha < 0,01 : résultat très significatif. alpha < 0,05 : résultat significatif.
Soit p>0,05: la différence n'est pas significative, on ne peut pas conclure à une différence. Soit p≤0,05: la différence est significative, le risque pris est précisé, sa valeur est appelée degré de signification.
Une valeur-p de 0,05 signifie qu'il y a une chance sur 20 qu'une hypothèse correcte soit rejetée plusieurs fois lors d'une multitude de tests (et n'indique pas, comme on le croit souvent, que la probabilité d'erreur sur un test unique est de 5 %).
La variance et l'écart-type nous permettent de quantifier à quel point les données sont dispersées ou regroupées autour de la moyenne. Une variance élevée indique une plus grande dispersion, tandis qu'une variance faible indique une plus grande concentration des données.
Plus l'écart-type est grand, plus les valeurs sont dispersées autour de la moyenne ; plus l'écart-type est petit, plus les valeurs sont concentrées autour de la moyenne. Le carré de l'écart-type est la variance ; la variance est aussi un indicateur de dispersion.
La variance
Cette formule intègre des carrés dans le but d'éviter que les écarts positifs et les écarts négatifs par rapport à la moyenne ne s'annulent. La dimension de cette mesure étant le carré de la dimension de la moyenne, on utilise plus souvent l'écart-type qui n'est rien d'autre que la racine de la variance.
Lorsqu'un résultat est statistiquement significatif, il est peu probable qu'il apparaisse par hasard ou en raison d'une variation aléatoire. Il existe une valeur limite pour déterminer la signification statistique. Cette limite est le niveau de signification.
le r d'une corrélation de Pearson mesure la force d'association entre les deux variables que l'on cherche à corréler ; le d de Cohen ou d' permet de caractériser la magnitude d'un effet associé dans une population donnée par rapport à une hypothèse nulle.
La significativité statistique, ou seuil de signification, désigne le seuil à partir duquel les résultats d'un test sont jugés fiables. Autrement dit, ce seuil détermine la confiance dans la corrélation entre un test effectué et les résultats obtenus.
Dans le domaine de la statistique, un résultat est dit significatif s'il est improbable qu'il se soit produit par hasard.
Une valeur t est le résultat d'un test statistiques. La valeur est située sur la distribution t de Student adaptée aux degrés de liberté. L'emplacement indique la probabilité d'obtenir la valeur t par hasard.
En mathématiques, l'écart type (aussi orthographié écart-type) est une mesure de la dispersion des valeurs d'un échantillon statistique ou d'une distribution de probabilité. Il est défini comme la racine carrée de la variance ou, de manière équivalente, comme la moyenne quadratique des écarts par rapport à la moyenne.
L'écart-type sert à mesurer la dispersion, ou l'étalement, d'un ensemble de valeurs autour de leur moyenne. Plus l'écart-type est faible, plus la population est homogène.
Pour deux ensembles de données ayant la même moyenne, celui dont l'écart-type est le plus grand est celui dans lequel les données sont les plus dispersées par rapport au centre. L'écart-type est égal à 0 zéro si toutes les valeurs d'un ensemble de données sont les mêmes (parce que chaque valeur est égale à la moyenne).
Il est possible de l'interpréter comme la dispersion des valeurs par rapport à la moyenne. Concrètement, la variance est définie comme la moyenne des carrés des écarts à la moyenne. La considération du carré de ces écarts évite que s'annulent des écarts positifs et négatifs.
L'écart-type est une mesure de la dispersion d'une série statistique autour de sa moyenne. La formule pour calculer la variance et donc l'écart-type n'est pas la même selon qu'il s'agit des données relatives à une population ou des données relatives à un échantillon.
Il faut en repérer la source, l'auteur, la date de publication, le champ (population étudiée, date des données, lieu concernant les données). Il s'agit ensuite de comprendre les données. Pour cela, il peut être utile de repérer le total en lignes ou en colonnes. Enfin, il faut analyser les données du tableau.
La puissance du test représente la probabilité de rejeter l'hypothèse nulle H0 lorsque l'hypothèse vraie est H1. Plus β est petit, plus le test est puissant. A titre d'exemple, regardons ce qu'il se passe à propos d'un test sur la moyenne.
Cela s'articule habituellement autour de l'hypothèse nulle (H0): si on accepte l'hypothèse nulle, l'hypothèse alternative (H1) est infirmée; inversement, si on rejette l'hypothèse nulle, l'hypothèse alternative est confirmée.
Une valeur p, qui signifie valeur de probabilité, est une mesure statistique comprise entre 0 et 1. Elle est utilisée pour un test d'hypothèse. Dans des essais cliniques, elle est utilisée pour donner une indication qui détermine si un résultat observé dans un essai clinique peut être dû à un hasard ou non.