Comment justifier qu'une fonction est dérivable ?

Interrogée par: Marie de Le Roux  |  Dernière mise à jour: 4. August 2024
Notation: 4.9 sur 5 (45 évaluations)

Une fonction f:I→R f : I → R est donc dérivable en a si et seulement s'il existe α∈R α ∈ R et une fonction ε définie dans un intervalle J ouvert contenant 0 , vérifiant limh→0ε(h)=0 lim h → 0 ε ( h ) = 0 tels que ∀h∈J, f(a+h)=f(a)+αh+hε(h). ∀ h ∈ J , f ( a + h ) = f ( a ) + α h + h ε ( h ) .

Comment justifier la dérivabilité d'une fonction ?

La dérivabilité se démontre usuellement de deux façons : dans l'étude locale (c'est-à-dire en se plaçant dans un voisinage du point étudié), en utilisant directement la définition de l'existence du nombre dérivé à l'aide de limites.

Comment savoir si une fonction est dérivable sur un intervalle ?

On dit qu'une fonction f est dérivable sur un intervalle I lorsque f est dérivable en tout point de I. On note f la fonction dérivée de f qui à tout x ∈I associe f (x). Si g ne s'annule pas sur I, f g est aussi dérivable sur I et ( f g ) = f g − fg g2 .

Comment montrer qu'une fonction est dérivable deux fois ?

Soient I un intervalle de R, f : I → R une fonction dérivable et a ∈ I. On dit que f est deux fois dérivable en a si f est dérivable en a. La dérivée de f en a s'appelle la dérivée seconde de f en a et se note f (a). On dit que f est deux fois dérivable si f est dérivable.

Comment montrer qu'une application est dérivable ?

On dit qu'une fonction est dérivable en 𝑥 = 𝑥  si ces limites existent. Si seule la limite à gauche ou à droite existe, alors on dit que la fonction est dérivable en 𝑥 = 𝑥  à gauche ou à droite respectivement.

Comment comprendre FACILEMENT les dérivées

Trouvé 37 questions connexes

Comment savoir si une fonction est dérivable graphiquement ?

Sommaire. On peut déterminer graphiquement la valeur de la dérivée d'une fonction f en un réel a, en utilisant la tangente à la courbe représentative de f au point d'abscisse a. On considère la fonction f, dont la courbe représentative C_f est donnée ci-dessous. T_0 est la tangente à C_f au point d'abscisse 0.

Comment justifier qu'une fonction est définie ?

Exemple. Soit f une fonction de la variable réelle x définie par f ( x ) = 8 x + 32 . La fonction est définie pour tous les x tels que est positif ou nul et seulement pour ceux-ci. La quantité est positive ou nulle si et seulement si 8 x est supérieur ou égal à − 32 .

Comment justifier qu'une fonction est croissante ?

Théorème : Soit I un intervalle de R et f:I→R f : I → R dérivable. Alors : f est croissante sur I si et seulement si, pour tout x∈I x ∈ I , f′(x)≥0 f ′ ( x ) ≥ 0 ; f est strictement croissante sur I si et seulement si f′≥0 f ′ ≥ 0 et si f′ n'est identiquement nulle sur aucun intervalle [a,b]⊂I [ a , b ] ⊂ I avec a<b .

Comment étudier la dérivabilité d'une fonction réciproque ?

D'après le théorème des fonctions réciproques, la fonction est dérivable en tout point image d'un tel que. Mais on a : f ′ ( x ) = 0 ⇔ x = 0 , donc est dérivable en tout point autre que. Donc est dérivable sur. Représentation graphique de et de dans un repère orthonormé.

Comment montrer que F 1 est dérivable en un point ?

Démonstration : 4)

Soit x = f − 1 ( y ) ; on a x 0 = f − 1 ( y 0 ) et par conséquent. Or est continue, donc quand tend vers y 0 , x = f − 1 ( y ) tend vers x 0 = f − 1 ( y 0 ) et le rapport x − x 0 f ( x ) − f ( x 0 ) a une limite puisque est dérivable en et que sa dérivée f ′ ( x 0 ) est non nulle.

Comment savoir si la fonction est croissante ou décroissante ?

Lorsqu'on se promène sur la courbe en allant de la gauche vers la droite : Sur l'intervalle [0 ; 2,5], on monte, on dit que la fonction est croissante. Sur l'intervalle [2,5 ; 5], on descend, on dit que la fonction est décroissante.

Comment savoir si une suite est croissante ou décroissante ?

▶ Si un+1 − un est positive, alors la suite (un) est croissante. ▶ Si un+1 − un est négative, alors la suite (un) est décroissante. b) Si tous les termes de la suite sont strictement positifs, alors il suffit de comparer le rapport un+1 un à 1. ▶ Si un+1 un ⩾ 1, alors la suite (un) est croissante.

Comment montrer qu'une fonction est croissante sans dérivée ?

Pour montrer qu'une fonction f(x) est croissante, il suffit de montrer f(x + a) > f(x) si a est strictement positif ou ce qui revient au même que f(x + a) - f(x) > 0 si a > 0. Avec f(x) = x3 on y arrive comme suit : (x+a)3−x3=x3+3ax2+3a2x+a3−x3.

Quand la fonction est dérivable ?

Une fonction f:I→R f : I → R est donc dérivable en a si et seulement s'il existe α∈R α ∈ R et une fonction ε définie dans un intervalle J ouvert contenant 0 , vérifiant limh→0ε(h)=0 lim h → 0 ε ( h ) = 0 tels que ∀h∈J, f(a+h)=f(a)+αh+hε(h).

Comment justifier une fonction linéaire ?

Une fonction linéaire est une fonction qui, à tout nombre x, associe le nombre ax , où a étant un nombre quelconque donné. a est appelé le coefficient de la fonction linéaire. On notera cette fonction de manière équivalente : ou f : x → ax ou f(x) = ax.

Comment montrer qu'une fonction est de classe infinie ?

si la dérivée n-i`eme, notée f(n), est continue, alors on dit que f est de classe Cn. (5) Si f est de classe Cn pour tout n ∈ N, alors f est infiniment dérivable, on dit que f est de classe C∞.

Qu'est-ce que ça veut dire dérivable ?

Se dit d'une fonction qui a une dérivée. (On distingue, selon les cas, les fonctions dérivables à droite ou à gauche, dérivables sur un intervalle ouvert ou fermé, dérivables n fois ou indéfiniment dérivables.)

Quelles sont les fonctions non dérivables ?

Une fonction n'est pas dérivable en un réel a de son domaine si notamment la dérivée à gauche en ce point est différente de la dérivée à droite en ce même point.

Quand la dérivée est nulle ?

si la dérivée est nulle sur tout l'intervalle, la fonction est constante sur cet intervalle. Exemple : la fonction est définie sur . Sa dérivée est toujours positive (ou nulle pour x = 0). Cette fonction est donc croissante sur son domaine de définition.

Pourquoi la dérivée d'une constante est nulle ?

Pour comprendre pourquoi ça vaut 0, et pas juste le constater, il faut simplement se rappeler que la dérivée permet de mesurer la variation de la fonction considérée. Une fonction constante, c'est une fonction qui ne varie pas, et donc naturellement elle a une dérivée nulle.

Comment reconnaître une fonction dérivée ?

La dérivée, 𝑓 ′ ( 𝑥 ) est positive lorsque la courbe est au-dessus de l'axe des 𝑥 , et est négative lorsque la courbe est sous l'axe des 𝑥 . Lorsque 𝑥 ∈ ] 1 ; 5 [ , on a 𝑓 ′ ( 𝑥 ) > 0 , donc la pente de la courbe représentative de 𝑓 ( 𝑥 ) est positive.

Comment savoir si une fonction est décroissante ?

On parle de décroissance lorsque, sur un intervalle donné du domaine d'une fonction, l'image de celle-ci n'augmente pas​. La décroissance correspond donc à un intervalle en x sur lequel les valeurs de y n'augmentent pas : elles diminuent ou restent constantes.

Comment Appelle-t-on une suite qui n'est ni croissante ni décroissante ?

Une fonction peut-elle être ni croissante ni décroissante ? - Quora. Oui, cela s'appelle une fonction non monotone. C'est une fonction qui ne croit ni ne décroit.

Quand une fonction est strictement croissante ?

f est strictement croissante si et seulement si pour tout x ∈ I, f ' (x) ≥ 0 et de plus l'ensemble des points où la dérivée f ' s'annule est d'intérieur vide (c'est-à-dire qu'il ne contient aucun intervalle non trivial).

Quand Dit-on qu'une suite est croissante ?

Définitions : • Une suite est croissante si chaque terme est supérieur ou égal à son précédent : un+1 ≥ un ou: Une suite est décroissante si chaque terme est inférieur ou égal à son précédent : un+1 ≤ un ou: Une suite est monotone si elle est croissante ou si elle est décroissante.

Article précédent
Qu'est-ce que l appairage Bluetooth ?