Si la fonction f est continue sur I et si fs est continue en a alors f est dérivable en a. Pour une fonction continue sur I, l'existence d'une dérivée symétrique positive suffit pour affirmer que f est croissante et l'existence d'une dérivée symétrique constamment nulle suffit pour prouver que f est constante.
Une fonction f:I→R f : I → R est donc dérivable en a si et seulement s'il existe α∈R α ∈ R et une fonction ε définie dans un intervalle J ouvert contenant 0 , vérifiant limh→0ε(h)=0 lim h → 0 ε ( h ) = 0 tels que ∀h∈J, f(a+h)=f(a)+αh+hε(h). ∀ h ∈ J , f ( a + h ) = f ( a ) + α h + h ε ( h ) .
On dit qu'une fonction est dérivable en 𝑥 = 𝑥 si ces limites existent. Si seule la limite à gauche ou à droite existe, alors on dit que la fonction est dérivable en 𝑥 = 𝑥 à gauche ou à droite respectivement.
Soient I un intervalle de R, f : I → R une fonction dérivable et a ∈ I. On dit que f est deux fois dérivable en a si f est dérivable en a. La dérivée de f en a s'appelle la dérivée seconde de f en a et se note f (a). On dit que f est deux fois dérivable si f est dérivable.
En mathématiques, une fonction continue nulle part dérivable est une fonction numérique qui est régulière du point de vue topologique (c'est-à-dire continue) mais ne l'est pas du tout du point de vue du calcul différentiel (c'est-à-dire qu'elle n'est dérivable en aucun point).
Les fonctions discontinues sont non dérivables en tout point où elles sont discontinues.
Pour faire simple, le signe de la dérivée permet d'indiquer les variations de la fonction f. C'est ce qui représente la tangente à la fonction. Et la dérivée elle-même représente le coefficient directeur de la tangente à f au point.
Graphiquement, si la fonction est définie mais non dérivable en un point, on observe un point anguleux, c'est-à-dire que le tracé de la courbe est « cassé ». Pourquoi ? Parce que la tangente à gauche du point n'est pas la même qu'à droite.
Un tableau de variations indique quand une fonction est croissante ou décroissante sur son domaine de définition. Pour dresser un tableau de variations, il faut utiliser la dérivation pour déterminer quand la fonction considérée est positive, négative et nulle.
La fonction valeur absolue prenant deux valeurs différentes suivant les valeurs de x, sa dérivée fera de même. Si x < 0, sa dérivée vaut −1. Si x > 0, sa dérivée vaut 1. La fonction valeur absolue n'est pas dérivable en 0.
si la dérivée est nulle sur tout l'intervalle, la fonction est constante sur cet intervalle. Exemple : la fonction est définie sur . Sa dérivée est toujours positive (ou nulle pour x = 0). Cette fonction est donc croissante sur son domaine de définition.
Lorsqu'une fonction n'est pas linéaire, sa pente peut varier d'un point à l'autre. Il nous faut donc introduire la notion de dérivée qui permet d'obtenir la pente en tout point de ces fonctions non linéaires.
Pour déterminer le sens de variation d'une fonction f , on étudie le signe de sa dérivée : f ′ ( x ) . Pour interpréter ce signe : Si f ′ ( x ) a le signe + sur un intervalle, alors f est croissante sur cet intervalle. Si f ′ ( x ) a le signe - sur un intervalle, alors f est décroissante sur cet intervalle.
Si une fonction est continue sur un intervalle, sa représentation graphique est en un seul morceau. Si la fonction est dérivable, sa représentation graphique admet une tangente en chacun de ses points.
La fonction f(x) = |x| a une dérivée discontinue en x = 0. |x| n'est pas dérivable en 0. Elle n'est donc pas dérivable sur R.
On a ainsi : f (x) = u(x) + v(x). Pour tout x de R , u'(x) = 1 et v'(x) = 2x.
Si f ^ { \prime } est strictement positive sur \text{I,} sauf pour un nombre fini de réels où elle s'annule, alors f est strictement croissante sur \text{I.} Si f ^ { \prime } est strictement négative sur \text{I,} sauf pour un nombre fini de réels où elle s'annule, alors f est strictement décroissante sur \text{I.}
Théorème : Soit I un intervalle de R et f:I→R f : I → R dérivable. Alors : f est croissante sur I si et seulement si, pour tout x∈I x ∈ I , f′(x)≥0 f ′ ( x ) ≥ 0 ; f est strictement croissante sur I si et seulement si f′≥0 f ′ ≥ 0 et si f′ n'est identiquement nulle sur aucun intervalle [a,b]⊂I [ a , b ] ⊂ I avec a<b .
Pour être plus précis, l'inverse du calcul de la dérivée est le calcul de primitive. Le calcul de primitive est l'un des moyens de calculer une intégrale. On peut aussi calculer une intégrale de façon géométrique, ou par des encadrements, des passages à la limite…
Énoncé On appelle généralement fonction nulle la fonction constante définie sur l'ensemble des nombres réels ou complexes par : ƒ(x) = 0.
Si la dérivée est d'abord positive , s' annule puis devient négative la fonction passe par un « maximum ». Si la dérivée est d'abord négative , s' annule puis devient positive la fonction passe par un « minimum ». Point d'inflexion : L'annulation de la dérivée sans changement de signe correspond à un point d'inflexion.
Si la fonction est égale à sa dérivée, on voit que pour toute valeur initiale f(0), il n'y aura qu'une seule fonction qui répondra à la question. Or (a exp(x)) répond à la question et on peut choisir a pour toute valeur de f(0). Donc (a exp(x)) est la seule solution.
Pour comprendre pourquoi ça vaut 0, et pas juste le constater, il faut simplement se rappeler que la dérivée permet de mesurer la variation de la fonction considérée. Une fonction constante, c'est une fonction qui ne varie pas, et donc naturellement elle a une dérivée nulle.
L'intégrale est utilisée pour calculer l'aire située sous une fonction. Cette technique est très utilisée en architecture mais aussi en probabilités continues ou même pour la construction des autoroutes.