Une fonction F est une primitive d'une autre fonction f si et seulement si la dérivée F' de la fonction F est égale à f.
Pour déterminer une primitive d'une fonction rationnelle, on décompose celle-ci en une somme d'une fonction polynôme et d'une fonction inverse. Exemple : Soit f\left ( x \right )=\frac{x^{2}+2}{x-3} définie sur ]3\, ;+\infty[. Elle peut s'écrire sous la forme : f\left ( x \right )=ax+b+\frac{c}{x-3}.
Condition suffisante d'existence d'une primitive
Si f est une fonction continue sur l'intervalle [a,b], alors f admet une primitive F définie pour tout x ∈ [ a , b ] x \in \left[a,b\right] x∈[a,b] par F ( x ) = ∫ a x f ( t ) d t F(x) = \int_{a}^{x}f(t)dt F(x)=∫axf(t)dt.
primitivable : fonction de Darboux
Ceci rejoint le fait que si F est dérivable sur [a,b], alors F est dérivable sur tout intervalle [u,v] contenu dans [a,b] : si f est primitivable sur [a,b], alors elle est primitivable sur tout intervalle [u,v] contenu dans [a,b].
Définition de la primitive. Lorsque l'on a une fonction f(x) , il existe toujours une autre fonction F(x) , telle que si je la dérive donc F'(x) elle me donne la fonction f(x). D'autant il n'existe pas une seule fonction mais au contraire une infinité. Qu'est ce qu'une Primitive.
On peut noter l'ensemble des primitives d'une fonction avec le symbole d'intégration. Par exemple, l'ensemble des primitives de la fonction f ( x ) = 2 x est noté ∫ 2 x d x .
Pour déterminer une primitive de x↦eaxcos(bx) x ↦ e a x cos , on commence par écrire cos(bx)=Re(eibx) ( b x ) = ℜ e ( e i b x ) et donc que eaxcos(bx)=Re(e(a+ib)x) e a x cos ( b x ) = ℜ e ( e ( a + i b ) x ) .
Toutes les fonctions n'ont pas de primitive. Et une primitive, si elle existe, n'est jamais unique : elle n'est définie qu'à une constante près. Le théorème suivant garantit l'existence d'une primitive lorsque la fonction est continue.
Il y a des façons plus directes de calculer une primitive, en utilisant ce qu'on appelle une intégrale. En particulier, une primitive d'une fonction 𝑓 ( 𝑥 ) équivaut à l'intégrale indéfinie de 𝑓 ( 𝑥 ) . Ainsi, si 𝐹 ′ ( 𝑥 ) = 𝑓 ( 𝑥 ) , alors 𝐹 ( 𝑥 ) = 𝑓 ( 𝑥 ) 𝑥 + , d C où C est aussi appelée constante d'intégration.
Pour démontrer qu'une fonction définie sur I∖{a} I ∖ { a } peut se prolonger par continuité en a , on démontre que limx→af(x) lim x → a f ( x ) existe. On prolonge alors f par continuité en posant f(a)=limaf. f ( a ) = lim a f .
h a donc pour primitive g(x) + ln x + k, avec k réel constant. On a donc H(x) = x ln x – x + ln x + k. Ainsi H(1) = 1 ln 1 – 1 + ln 1 + k = k – 1.
Ainsi, toutes les primitives de f (x) = 2x sont de la forme F (x) = x2 + C (C est une constante).
F'(x) = G'(x) + m = f(x). Si F est une primitive de f sur I, alors (F + k)' = F' = f, donc F + k est aussi une primitive de f sur I. Réciproquement, soit G une primitive de f sur I. Alors G' = f = F', donc G' – F' = 0, soit encore (G – F)' = 0.
La différence entre primitive et intégrale est qu'une primitive est une fonction tandis qu'une intégrale est un réel exprimé comme une aire algébrique (pouvant être négatif).
Ouvrir une page « calculs ». Définir la fonction (c'est plus pratique). Dans le menu « Analyse », choix 3 « Intégrale ». Ne pas remplir les paramètres a et b permet d'obtenir une primitive de la fonction f.
Elle est de la forme avec u = x2 + 3 ; u' = 2x et u > 0. Alors, une primitive F de f est définie par F(x) = ln(u) = ln(x2 + 3). La fonction est définie sur ]-∞ ; 1,5[ et 2x - 3 < 0 sur ]-∞ ; 1,5[. Elle est de la forme avec u = 2x - 3 ; u' = 2 et u < 0.
Intégrale et primitives
L'intégrale de la fonction nulle est nulle sur tout intervalle inclus dans l'ensemble des réels ; les primitives de la fonction nulle (sur ℝ) sont donc les fonctions constantes.
La dérivée du produit uv étant donnée par u'v + v'u, uv est une primitive de u'v + v'u sur l'intervalle [a ; b].
La principale méthode pour calculer une intégrale passe par la notion de primitive d'une fonction. La « primitivation » est l'opération qui, à partir d'une fonction f, donne une fonction F dérivable et dont la dérivée est égale à f : F′(x) = f(x).
deux primitives d'une même fonction, sur un intervalle, ne diffèrent que d'une constante. Soit G fonction définie sur I par G(x) = F(x)+k avec k réel. * Par addition, G est dérivable sur I. De plus : G'(x) = F'(x) = f (x) pour tout x de I donc G est une primitive de f sur I.
Pour déterminer l'aire du domaine délimité par l'axe des abscisses, la courbe représentative d'une fonction positive f et les droites d'équations x = a et x = b (a ≤ b), on cherche une fonction F telle que F ' = f. L'aire est alors F(b) − F(a). On dit que F est une primitive de f.
Sa création est liée à une polémique entre deux mathématiciens : Isaac Newton et Gottfried Wilhelm Leibniz . Néanmoins, on retrouve chez des mathématiciens plus anciens les prémices de ce type de calcul : Archimède , Pierre de Fermat et Isaac Barrow.
La première définition rigoureuse des intégrales et primitives des fonctions continues est due à Augustin-Louis Cauchy (1789-1857). Il démontre le « théorème fondamental du calcul intégral » pour les fonctions continues.
Une primitive de la division u' / u^n
On va donc calculer la dérivée de (u(x)^(-n+1))/(-n+1). La dérivée de ça c'est u'(x) pour commencer, c'est la partie facile, u'(x) que multiplie la dérivée de cette chose-là.
Les primitives sont utilisées quand on a la dérivée d'une fonction et qu'on cherche la fonction elle-même. Tu verras cela en mécanique quand tu chercheras les équations horaires d'un projectile.