Deux matrices A = ( a i k ) de type ( , ) et B = ( b k j ) de type ( , ) peuvent se multiplier. Le produit de ces deux matrices est une matrice C = ( c i j ) de type ( , ), où l'élément c i j de est obtenu en sommant les produits des éléments de la ième ligne de par les éléments de la jème colonne de .
1. On multiplie dans l'ordre, élément par élément, chaque élément d'une ligne de la première matrice A par chaque élément d'une colonne de la deuxième matrice B et ce, pour l'ensemble des éléments des deux matrices. 2. On effectue la somme de ces produits pour obtenir une nouvelle matrice.
Pour que le produit de deux matrices soit défini, il faut que le nombre de colonnes de la première matrice soit égal au nombre de lignes de la deuxième.
Il suffit de rentrer chaque matrice de façon "naturelle" élément par élément, séparé d'un espace en effectuant un saut de ligne à chaque fin de ligne de la matrice. Vous pouvez entrer des entiers relatifs et des fractions de la forme -3/4 par exemple.
La multiplication matricielle est associative : quelles que soient les matrices A, B et C, ( A × B ) × C = A × ( B × C ) (A×B)×C=A×(B×C) (A×B)×C=A×(B×C)
Deux matrices A = ( a i k ) de type ( , ) et B = ( b k j ) de type ( , ) peuvent se multiplier. Le produit de ces deux matrices est une matrice C = ( c i j ) de type ( , ), où l'élément c i j de est obtenu en sommant les produits des éléments de la ième ligne de par les éléments de la jème colonne de .
Un intérêt principal des matrices est qu'elles permettent d'écrire commodément les opérations habituelles de l'algèbre linéaire, avec une certaine canonicité.
Le produit matriciel s'en d duit : le produit de la matrice A (n × m) par la matrice B (m × p) est la matrice C (n × p) telle que l'élément Cij est égal au produit scalaire de la ligne i de la matrice A par la colonne j de la matrice B.
Déterminant : si n ≥ 2, det(comA) = (detA)n–1. Comatrice de la comatrice : si n ≥ 2, com(comA) = (detA)n–2 A. Si P(X) = det(A – X In) est le polynôme caractéristique de A et si Q est le polynôme défini par Q(X) = (P(0) – P(X))/X, alors : t(comA) = Q(A).
Le produit de deux matrices ne peut se définir que si le nombre de colonnes de la première matrice est le même que le nombre de lignes de la deuxième matrice, c'est-à-dire lorsqu'elles sont de type compatible.
Si A a autant de colonnes que B de lignes et B autant de colonnes que C de lignes, alors les deux produits (AB)C et A(BC) sont bien définis et égaux. On les écrit tous les deux ABC. Et ça se prouve ! C2 = (A+B)(A+B) = A(A+B)+B(A+B) = A2 +AB +BA+B2 C2 = (A+B)(A+B)=(A+B)A+(A+B)B = A2 +BA+AB+B2.
x C = A x C + B x C c) (kA)B = A(kB) = k(A x B) Définition : Soit A une matrice carrée et n un entier naturel. Le carré de A est la matrice, noté A2, égale à A x A. Le cube de A est la matrice, noté A3, égale à A x A x A.
il y a des diviseurs de O: si un produit de deux matrices est nul (toutes les composantes sont nulles) il peut arriver qu'aucune des deux matrices ne soit nulle.
Additionnez les trois cofacteurs.
Trois cofacteurs, un pour chaque coefficient d'une seule ligne (ou colonne), que vous additionnez et vous aurez le déterminant de la matrice 3 x 3. Pour notre exemple, cela donne : (-34) + (120) + (-12) = 74.
Comment calculer le conjugué d'une matrice complexe ? La matrice conjuguée se calcule pour une matrice contenant des éléments complexes en calculant le conjugué de chaque élément. Utiliser le caractère i pour représenter i l'unité imaginaire des nombres complexes.
Une matrice scalaire est une matrice diagonale (à coefficients dans un anneau) dont tous les coefficients diagonaux sont égaux, c'est-à-dire de la forme λIn où λ est un scalaire et In la matrice identité d'ordre n.
Re : ordre d'une matrice
L'ordre d'une matrice est l'autre dénomination de la taille d'une matrice. Une matrice à M lignes et N colonnes est dites d'ordre MxN mais attention, il ne faut pas effectuer la multiplication. Exemple : une matrice avec 2 lignes et 3 colonnes sera dite d'ordre 2x3.
Aujourd'hui, les matrices sont souvent utilisées dans des domaines tels que l'administration, la psychologie, la génétique, les statistiques et l'économie. Avant d'étudier les opérations associées aux matrices, débutons par l'identification et la définition des termes associés aux matrices.
Ce fut James Sylvester qui utilisa pour la première fois le terme « matrice » en 1850, pour désigner un tableau de nombres. En 1855, Arthur Cayley introduisit la matrice comme représentation d'une transformation linéaire.
Une matrice est un tableau de données à deux entrées (par exemple, avec m lignes et n colonnes, la matrice étant alors dite « de taille (m, n) »), auquel on peut appliquer diverses opérations. Il en existe de différents types : matrice orthogonale, matrice symétrique, matrice antisymétrique, matrice unitaire, etc.
La matrice est "encadrée" par des parenthèses (ou des crochets dans certains exer- cices). – Si A est une matrice de dimension m × n, on note généralement aij le coefficient qui se trouve à la ième ligne et dans la jème colonne de la matrice, où 1 ≤ i ≤ m et 1 ≤ j ≤ n. , est une matrice de 3 lignes et 4 colonnes.