La médiatrice d'un segment de droite, délimité par deux points d'un plan, est une ligne qui coupe perpendiculairement (90°) le segment en deux parties égales. Pour trouver son équation, il vous faut trouver les coordonnées du milieu du segment, la pente entre ces deux points, puis l'opposée inverse de cette pente.
Tracer la droite passant perpendiculairement par le milieu d'un côté On trace la droite passant perpendiculairement et par le milieu d'un premier côté. On obtient la première médiatrice. On trace la droite passant perpendiculairement par le milieu de \left[ BC\right], c'est-à-dire la médiatrice de \left[ BC\right].
Droite perpendiculaire à un segment et passant par son milieu. (C'est l'ensemble des points d'un plan contenant ce segment, équidistants de ses extrémités.)
Médiane : droite joignant le sommet d'un triangle au milieu du côté opposé. Médiatrice : droite passant par le milieu d'un segment et perpendiculaire à ce segment. Bissectrice : demi-droite coupant un angle en deux parties égales.
La première utilise la définition de la médiatrice d'un segment : c'est une droite qui passe par le milieu du segment et qui est perpendiculaire au segment. Pour la construire, il faut : placer le milieu du segment avec la règle graduée ; tracer avec l'équerre la perpendiculaire au segment passant par le milieu.
Si un triangle est rectangle, alors la longueur de la médiane issue de l'angle droit est égale à la moitié de l'hypoténuse. Dans un triangle rectangle, le carré de l'hypoténuse est égal à la somme des carrés des deux autres côtés.
- Pour tracer la bissectrice de l'angle , on trace un arc de cercle de centre O qui coupe les deux demi-droites [Ox) et [Oy) en A et B respectivement. - Puis on tracedeux arcs de cerlce de même rayon, l'un de centre A, l'autre de centre B.
La médiatrice d'un segment de droite est la droite perpendiculaire à un segment de droite en son milieu. La droite d est la médiatrice du segment AB.
Définition : La médiatrice d'un segment [AB] est la droite qui passe par le milieu de [AB] et qui est perpendiculaire au segment [AB]. Remarque : La médiatrice d'un segment est l'axe de symétrie de ce segment.
La bissectrice d'un angle est la droite qui partage un angle en deux angles de même mesure.
Il existe un point et un seul à égale distance de trois points non alignés. Ce point est l'intersection des médiatrices des trois côtés du triangle formés par ces trois points. Le point O sur la médiatrice OC' de AB est à égale distance R des points A et B.
Tracer un segment consiste à relier deux points distincts par une ligne. On trace une droite en plaçant la règle sur une feuille de papier et en longeant l'un de ses bords avec un crayon à papier bien taillé.
Méthode avec une équerre
Déposer un côté de l'angle droit de l'équerre sur la base du triangle. Aligner l'autre côté de l'angle droit de l'équerre avec le sommet du triangle. Tracer le segment qui part du sommet et qui rejoint perpendiculairement la base du triangle. Ce segment est la hauteur du triangle.
Pour tracer une hauteur isssue de A, on trace un cercle de centre A qui coupe le côté opposé en deux points, puis on trace un autre point de la médiatric du segment obtenu. Cette médiatrice est la hauteur issue de A du triangle ABC.
Il suffit de tracer un cercle de centre O et de rayon quelconque qui coupe les demi-droites de l'angle en A et B, puis de prendre un point C sur le cercle ; l'angle moitié sera ACB. Il faut prendre le point C sur la bonne partie du cercle, sinon on obtiendrait le supplémentaire de l'angle moitié.
Pour mesurer un angle, on utilise un rapporteur. La plupart des rapporteurs sont gradués en degré (°) avec une double graduation : de 0 à 180° de gauche à droite sur la graduation extérieure ; et de 0 à 180° de droite à gauche sur la graduation intérieure.
A l'aide du compas, on place sa pointe à une extrémité du segment et on trace un arc de cercle. Puis en conservant le même écartement du compas, on place la pointe sur la deuxième extrémité du segment en traçant un deuxième arc de cercle. Le point où se coupent ces deux arcs de cercle est le sommet du triangle.
Les 3 médiatrices d'un triangle sont les médiatrices de chacun de ses côtés. Ces 3 médiatrices se coupent en un point qui est le centre du cercle circonscrit au triangle.
On trace la droite perpendiculaire à la droite [BC] passant par A. On note H le point d'intersection entre la hauteur et la droite [BC]. On dit que H est le pied de la hauteur. Le côté [AB] : le sommet opposé est alors le point C.
Trace une droite perpendiculaire au deuxième côté [BC] et qui passe par le sommet opposé A. Trace une droite perpendiculaire au troisième côté [CA] et qui passe par le sommet opposé B. Les droites (h1), (h2) et (h3) sont les 3 hauteurs du triangle.