En base 10 → 10 chiffres En base 3 → 3 chiffres (0,1,2). Dans une base « B », les chiffres ont tous une valeur inférieure à « B ». Ex : en base 5, les chiffres utilisés sont 0, 1, 2, 3, 4. La suite des nombres de la base 5 sera donc : 1, 2, 3, 4, 10, 11, 12, 13, 14, 20, etc.
La méthode la plus simple pour convertir un nombre décimal en binaire est la méthode euclidienne. On divise le décimal par 2, on note le reste de la division 1 ou 0. On réapplique le même procédé avec le quotient précédent, et on met de nouveau le reste de côté.
1. Quel est en base 5 le nombre qui précède 1200 en base 5 et qui suit 4124. Pour moi, 1200, si on fait le parallèle avec les représentations utilisées en base 10, c'est 1 caisse, 2 valises, 0 boite et 0 unité.
Conversion base 10 en base 16
L'algorithme de conversion de la base 10 à la base 16 est très proche de celui de la conversion de décimal à binaire. Prenons un exemple : 5869=366×16+13 5869 = 366 × 16 + 13 reste = 13. 366=22×16+14 366 = 22 × 16 + 14 reste = 14.
Pour passer de l'octal en binaire : on remplace chaque chiffre octal par les trois bits correspondants. Pour passer du binaire en octal : on parcourt le nombre binaire de la droite vers la gauche en regroupant les chiffres binaires par paquets de 3 (en complétant éventuellement par des zéros).
Il suffit de découper le nombre en paquet de 3 ou 4 bits(a partir de la droite) et de remplacer par la valeur correspondante. Les paquets sont de 3 bit pour l'octal et 4bits pour l'hexadécimal.
Ex : en base 5, les chiffres utilisés sont 0, 1, 2, 3, 4. La suite des nombres de la base 5 sera donc : 1, 2, 3, 4, 10, 11, 12, 13, 14, 20, etc.
Le système quaternaire est le système de numération de base 4. Il utilise les chiffres 0, 1, 2 et 3 pour représenter n'importe quel nombre réel.
Dans le nombre 98, le 9 indique qu'il y a 9 dizaines. Ce chiffre de 9 a été obtenu en divisant 98 par 101, soit 10. En base 8, le principe est le même, il faut diviser le nombre à convertir par la plus forte puissance. C'est ainsi que 98 sera divisé par 64 et vous ne retiendrez que la partie entière du quotient.
Méthode systématique : de droite à gauche
Ce chiffre en position 0 a un poids égal à la base exposant zéro = B0 = 1 = l'unité. En divisant à nouveau le quotient de la division précédente par la base on obtient le chiffre de position 1 dont le poids est B1 = la base.
le compte sur les dix doigts est très intuitif ainsi que cela a été mentionné ci-dessus ; son ordre de grandeur est satisfaisant, car il permet de réduire considérablement la longueur d'un grand nombre par rapport à la base 2, tout en conservant des tableaux d'additions et de multiplications mémorisables.
Pour convertir un nombre décimal en nombre binaire (en base B = 2), il suffit de faire des divisions entières successives par 2 jusqu'à ce que le quotient devienne nul. Le résultat sera la juxtaposition des restes. Le bit de poids fort correspondant au reste obtenu à l'ultime étape de la division.
Conversion binaire-décimal
Le premier rang (en partant de la droite) est le rang 0, le second est le 1, etc. Pour convertir le tout en décimal, on procède de la manière suivante : on multiplie par 20 la valeur du rang 0, par 21 la valeur du rang 1, par 22 la valeur du rang 2, [...], par 210 la valeur du rang 10, etc.
Pour obtenir l'expression binaire d'un nombre exprimé en décimal, il suffit de diviser successivement ce nombre par 2 jusqu'à ce que le quotient obtenu soit égal à 0. Comme pour la conversion dans le système décimal les restes de ces divisions lus de bas en haut représentent le nombre binaire. (44)10 = (101100)2.
En Occident, la plupart des gens ont appris à compter en base 10 avec les chiffres 0, 1, 2..., 9. Cependant, il existe d'autres systèmes de numération, les plus connus étant les systèmes binaire (0, 1) et hexadécimal (0, 1, 2, 3, 4, 5, 6, 7, 8, 9, A, B, C, D, E, F).
Le système de numération octal est le système de numération de base 8, et utilise les chiffres de 0 à 7.
En chimie, une superbase est une base extrêmement forte. En solution aqueuse, l'ion hydroxyde est la base la plus forte possible mais il existe des bases bien plus fortes que celles pouvant exister dans l'eau. Ces bases sont extrêmement utiles en synthèse organique.
Les chiffres de la base 10 sont 0, 1, 2, 3, 4, 5, 6, 7, 8, 9. En base dix, pour décrire l'entier 4758, on peut écrire : 8 unités, 5 dizaines, 7 centaines et 4 milliers. En base deux, pour décrire l'entier 1101, on pourra écrire : 1 unité, 0 deuzaine, 1 quatraine, 1 huitaine.
Pour convertir un nombre binaire en base 16, on regroupe les bits 4 à 4, chaque groupe donnant un chiffre hexadécimal. À l'inverse, passer d'un nombre hexadécimal à sa représentation binaire se fait en remplaçant chaque chiffre pour son équivalent sur 4 bits.
Le grand avantage du système hexadécimal réside dans son format compact, car la base 16 signifie qu'il faut moins de chiffres pour représenter un nombre donné qu'en format binaire ou décimal. En outre, il est relativement simple et rapide de convertir les chiffres hexadécimaux en chiffres binaires et inversement.
Les nombres binaires étant de plus en plus longs, il a fallu introduire une nouvelle base : la base hexadécimale. La base hexadécimale consiste à compter sur une base 16, c'est pourquoi au-delà des 10 premiers chiffres on a décidé d'ajouter les 6 premières lettres : 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, A, B, C, D, E, F.