Exemples de factorisation d'un trinôme La factorisation s'obtient aussi directement depuis la forme canonique. Si r 1 et r 2 sont les racines distinctes ou égales du trinôme T ( x ) = a x 2 + b x + c , celui se factorise ainsi : T ( x ) = a ( x − r 1 ) ( x − r 2 ) .
Règle. Pour passer de la forme factorisée à la forme générale, il suffit de développer de façon algébrique l'équation de la fonction. Soit l'équation d'une fonction polynomiale de degré 2 sous la forme factorisée: f(x)=4(x−2)(x+7) f ( x ) = 4 ( x − 2 ) ( x + 7 ) .
I) Forme canonique et racines
P(x)=a((x+b2a)2–b2–4ac4a2). Le réel Δ = b2 – 4ac est appelé discriminant de P ou discriminant de l'équation ax2 + bx + c = 0.
Pour factoriser une somme, il faut repérer le facteur commun aux différents termes de la somme. A : le facteur commun est x ; si l'on développe x(x − 5), on retrouve bien x2 − 5x. B : le facteur commun est 2x ; si l'on développe 2x(x − 3 + y), on retrouve bien 2x2− 6x + 2xy.
On peut en déduire une formule. Pour mettre le trinôme x 2 + b x sous forme canonique, il faut ajouter et retrancher ( b 2 ) 2 . Par exemple, pour mettre x 2 + 6 x sous forme canonique, on ajoute et on retranche ( 6 2 ) 2 = 9 .
Cette dernière écriture s'appelle la forme canonique de f. avec α = − b 2a et β = − b2 − 4ac 4a .
Forme factorisée
Un trinôme du second degré ax2 + bx + c, est factorisé lorsqu'on l'écrit sous la forme a(x – x1)(x – x2). Si un trinôme ax2 + bx + c peut être factorisé, alors l'équation ax2 + bx + c = 0 a au moins une solution car on a a(x – x1)(x – x2) = 0 pour x = x1 ou x = x2.
Factoriser un polynôme du second degré consiste à l'écrire sous la forme d'un produit de polynôme du premier degré. Ce n'est possible que si la fonction polynôme possède 1 ou 2 racines. Une fonction polynôme de degré 2 s'écrit sous la forme où , , sont des réels avec .
Définition : Factoriser une expression, c'est transformer une somme ou une différence en produit.
La forme canonique sert à étudier les variations ou trouver un extremum (minimum ou maximum). (a) La représentation graphique d'une fonction polynôme du second degré est une parabole dont les branches sont tournées vers le haut si a > 0, vers le bas si a < 0.
➡️ Par exemple, pour un polynôme du second degré P(x) = ax² + bx + c, les racines peuvent être trouvées en résolvant l'équation quadratique ax² + bx + c = 0 à l'aide de la formule quadratique. Autrement dit, un réel a est un racine de P si P(a) = 0. On dit aussi que a est solution de l'équation P(x) = 0.
On souvente que c'est un trinôme. Forme canonique : f(x) = a (x - ∝)² + β où ∝ = - b/2a et β = f(a).
Si $x_0$ est une racine du polynôme ($P(x_0) = 0$) alors $P$ se factorise sous la forme suivante : $P(x) = (x – x_0)\times Q(x)$ avec $Q$ un polynôme du second degré.
Action de la mettre sous la forme de facteurs, un facteur étant un nombre (ou un groupe de nombres) qui multiplie un ou plusieurs autres nombres (ou groupes de nombres). Transformer une somme algébrique en un produit. Exemple : La factorisation doit mettre en évidence au moins 2 expressions multipliées.
Pour factoriser une expression de la forme a²+2ab+b², on utilise l'identité remarquable (a+b)². Par exemple, x²+10x+25 peut être écrit sous la forme (x+5)². Cette méthode est basée sur la reconnaissance de l'identité remarquable (a+b)²=a²+2ab+b² (qu'on peut toujours vérifier en développant le produit (a+b)(a+b)).
La factorisation consiste à écrire une expression algébrique sous la forme d'un produit de facteurs. Généralement, la factorisation permet de simplifier une expression algébrique afin de résoudre un problème plus facilement.
Si un terme est élevé à des puissances diverses comme facteur des termes d'une somme algébrique, on peut factoriser par la puissance d'exposant le plus bas : si n > p alors a x n + b x p = ( a x n − p + b ) x p . Une différence de carrés se factorise grâce à l'identité remarquable a 2 − b 2 = ( a − b ) ( a + b ).
Si un polynôme P de degré 3 admet une racine réelle α , alors ce polynôme est factorisable par (x −α). on a alors : P(x) = (x −α)×Q(x) où Q(x) est un polynôme de degré 2. Utilisation : Le polynôme P(x) = x3 −4x2 −7x +10 admet comme racine évidente le nombre 1.
C'est la forme développée de 2(x – 3)(x + 2)(x – 1). On dit qu'un réel r est une racine d'une fonction polynôme du troisième degré f d'expression f(x) = ax3 + bx2 + cx + d lorsque f(r) = 0, c'est-à-dire lorsque ar3 + br2 + cr + d = 0.
Factoriser une expression, c'est transformer une somme ou une différence en un produit. Il faut donc à la base avoir au moins deux termes que l'on additionne ou soustrait. Par exemple dans 8x + 5, les deux termes sont 8x et 5. Dans 6(x+4)2 – 9, les deux termes sont 6(x+4)2 et 9.
Une fonction polynôme de degré 2 est une fonction définie sur R dont l'expression algébrique peut être mise sous la forme : f ( x ) = a x 2 + b x + c f(x)=ax^2+bx+c f(x)=ax2+bx+c, avec a ≠ 0 a\neq0 a=0.
Si \Delta=0, on peut factoriser f(x) sous la forme f(x)=a(x-x_0)^2, avec x_0 la racine double de f. Si \Delta>0, on peut factoriser f(x) sous la forme f(x)=a(x-x_1)(x-x_2), avec x_1 et x_2 les deux racines de f.
Il n'est pas toujours nécessaire de calculer le discriminant Δ. On peut aussi chercher une racine évidente de l'équation du second degré en factorisant le polynôme. Résoudre x2 – 1 = 0 revient à résoudre x2 = 1 soit x = –1 ou x = 1. Résoudre x2 – 2x = 0 revient à résoudre x(x – 2) = 0 soit x = 0 ou x = 2.
La forme canonique est la forme factorisée. Si Δ est nul, posons r = − b 2 a . La forme canonique est la forme factorisée : a x 2 + b x + c = a ( x − r ) 2 et (E) admet r comme une unique solution.