Une fonction f est affine si on peut déterminer deux réels m et p tels que, pour tout x \in \mathbb{R}, f(x)=m x+p.
Proposition 2.1.2. Soit O ∈ E un point fixé, alors f : E → F est affine si et seulement si l'application φ : −→ E → −→ F défini par φ( −−→ OM) = −−−−−−−→ f(O)f(M) est linéaire. linéaire, alors l'application f : E → F définie par : f(M) = O/ + φ( −−→ OM) .
Propriétés : 1) Une fonction affine est représentée par une droite. 2) Une fonction linéaire est représentée par une droite passant par l'origine. 3) Une fonction constante est représentée par une droite parallèle à l'axe des abscisses. Une fonction affine est représentée par une droite.
* Si une fonction est affine, alors sa représentation graphique est une droite (qui n'est pas parallèle à l'axe des ordonnées). * Réciproquement, si la représentation graphique d'une fonction est une droite (qui n'est pas parallèle à l'axe des ordonnées), alors cette fonction est affine.
Par conséquent, le graphique d'une fonction non affine n'est pas une droite. Un exemple de fonction non affine serait quelque chose comme 𝑦 est égal à 𝑥 au cube ou 𝑦 est égal à 𝑒 à la puissance 𝑥. Si nous examinons notre graphique, nous pouvons voir qu'il s'agit d'une droite non verticale.
Une fonction affine est une fonction qui, à tout nombre x, associe le nombre ax + b (a et b étant des nombres quelconques donnés). Remarque : une fonction linéaire est une fonction affine particulière. Dans ce cas : b = 0. On a f(–5) = 5 × (–5) – 3 = –28 .
On rappelle qu'une fonction affine f est représentée par une droite et admet une expression de la forme f\left(x\right)=ax+b. f est une fonction affine, elle a une expression de la forme f\left(x\right) = ax+b, avec : a le coefficient directeur de la droite. b l'ordonnée à l'origine.
Une fonction affine est donc un ensemble de valeurs résolvant l'équation y = ax + b, sur l'intervalle donné, et dont la représentation graphique prendra la forme d'une droite oblique, croissante ou décroissante.
Pour déterminer si cette représentation graphique correspond à une fonction, on ajoute une droite verticale sur le graphique et on vérifie le nombre de points d'intersection avec la courbe représentative. S'il y a plus d'un point d'intersection, la représentation graphique ne correspond pas à une fonction.
Une fonction linéaire est une fonction affine particulière. En effet, f : x → ax peut s'écrire f : x → ax + 0 . f : x → ax + b est une fonction affine, g : x → ax est la fonction linéaire associée à f.
Si une fonction affine est une fonction constante, c'est-à-dire qu'elle est de la forme 𝑓 ( 𝑥 ) = 𝑏 , la représentation graphique de cette fonction est toujours une droite horizontale passant par le point ( 0 ; 𝑏 ) .
Propriété Dans un plan muni d'un repère (O ; I ; J), la représentation graphique de la fonction affine x → ax + b est la droite d'équation : y = ax + b. a est le coefficient directeur de la droite et b est son ordonnée à l'origine.
Pour trouver a et b, il faut résoudre le système. Par addition membre à membre, on obtient 2b = 4, soit b = 2. a + 2 = -3, soit a = -5. f est une fonction affine dont la représentation graphique est une droite d qui passe par les points A(0 ; 6) et B(1 ; 2).
Soit une fonction affine f : x ax + b représentée dans un repère par une droite d. Les coordonnées (x ; y) d'un point M appartenant à d vérifient y = ax + b. La droite (d) représentant la fonction f définie par f(x) = ax + b a pour coefficient directeur a et pour ordonnée à l'origine b.
Une fonction linéaire est une fonction qui, à tout nombre x, associe le nombre ax , où a étant un nombre quelconque donné. a est appelé le coefficient de la fonction linéaire. On notera cette fonction de manière équivalente : ou f : x → ax ou f(x) = ax.
Soient x1 et x2 deux nombres quelconques (x1 x2). L'accroissement des images par une fonction affine, est proportionnel à l'accroissement des nombres associés.
Une fonction affine peut être décrite par : f : R → R → + La droite correspondant à une fonction affinene passe pas par ne passe pas par ne passe pas par l'origine l'origine l'origine. ety sont reliés par la relation y = a +. C'est l'équation de la droite l'équation de la droite l'équation de la droite.
Détermination du coefficient directeur de la droite : Détermination de l'ordonnée à l'origine : Il suffit de lire l'ordonnée du point d'intersection de la droite avec l'axe des ordonnées. L'équation est de la forme y = px + d.
Si une fonction f est affine, alors on peut l'écrire sous la forme f(x)=ax+b, où a et b sont deux nombres réels. La représentation graphique de cette fonction est une droite. Le nombre "a" est le coefficient directeur de cette droite.
Une fonction affine est une fonction qui, à tout nombre x, associe le nombre ax + b (a et b étant des nombres quelconques donnés). Une fonction linéaire est une fonction affine qui traduit une situation de proportionnalité. Le nombre a est le coefficient de proportionnalité et le nombre b est nul (= 0).
Une fonction n'est pas affine lorsque le taux d'accroissement n'est pas constant.
Dans le cas d'une fonction linéaire, il s'agit d'une droite passant par l'origine du repère. Dans le cas d'une fonction constante, il s'agit d'une droite parallèle à l'axe des abscisses. a est coefficient directeur et b est l'ordonnée à l'origine de la droite représentative.
les fonctions différentiables définies sur des variétés différentielles à valeurs numériques ou dans d'autres variétés. les fonctions arithmétiques à variable entière et à valeurs complexes. les fonctions booléennes à variables et valeurs dans l'algèbre de Boole.