Un cube parfait est le résultat du produit d'une valeur trois fois par elle-même, à l'image de 27 qui est le produit de 3 par 3 par 3. Pour faire disparaitre la racine cubique d'un cube parfait, remplacez-la entièrement par la valeur qui, élevée au cube, donne le radicande.
La méthode de Cardan est un algorithme permettant de résoudre les équations polynomiales dépréciées de degré 3 du type x3+cx+d=0. Le but est donc de trouver une formule qui permettrait de résoudre des équations de ce type pour n'importe quelle valeur de c et d. L'algorithme est fini.
Fonction définie par une relation de la forme f(x) = ax3. La forme paramétrique de la fonction cubique est f(x) = a(x − h) + k qui correspond à une translation parallèle aux axes de coordonnées de la fonction cubique de base définie par f(x) = x3, avec, au centre de symétrie, le point de coordonnées (h, k).
– Nombre qui multiplié trois fois par lui-même donne un cube. Ainsi 7 est la racine cubique de 343, car 7 × 7 × 7 = 343 = 73.
Une fonction (polynôme) de degré 3 est une fonction qui peut s'écrire sous la forme f(x) = ax3 + bx² + cx + d avec a un réel non nul, b, c et d trois réels. La fonction f définie par f(x) = –2x3 + 3x² – 5x + 1 est une fonction du troisième degré. On identifie les coefficients : a = –2 ; b = 3 ; c = –5 ; d = 1.
On sait déjà par définition qu'une racine cubique complexe de l'unité au cube est égale à 1. Par conséquent, 3 est la plus petite puissance entière positive d'une racine cubique complexe de l'unité qui donne une valeur de 1.
Règle. Pour extraire la racine cubique d'une fraction, il faut extraire séparément la racine du numérateur et la racine du dénominateur.
Forme canonique
Considérons l'équation générale du troisième degré à coefficients complexes. En posant Z' = Z+b/3 et en développant on arrive à : Z'3+pZ'+q = 0 où on pourra calculer les coefficient p et q en fonction de b,c et d.
Factoriser une expression, c'est transformer une somme ou une différence en un produit. Il faut donc à la base avoir au moins deux termes que l'on additionne ou soustrait. Par exemple dans 8x + 5, les deux termes sont 8x et 5. Dans 6(x+4)2 – 9, les deux termes sont 6(x+4)2 et 9.
Les racines d'une fonction polynôme de degré 3 du type x → a(x – x1)(x – x2)(x – x3) sont x1, x2 et x3. La fonction f : x → 2(x – 2)(x + 1)(x + 2) admet 3 racines : –2 ; –1 et 2. En effet, f(–2) = f(–1) = f(2) = 0.
La racine cubique du nombre a est le nombre dont le cube est a. Le symbole de la racine cubique est 3 cube root of, end cube root . Si b 3 = b × b × b = a b^3=b×b×b=a b3=b×b×b=ab, cubed, equals, b, ×, b, ×, b, equals, a, alors la racine cubique de a est b.
Si le discriminant est strictement négatif, il n'a pas de racine carrée réelle et donc l'équation n'admet pas de solution réelle.
Pour résoudre une équation du second degré de la forme ax^2+bx+c=0, on détermine les éventuelles racines du trinôme. Le nombre appelé discriminant du trinôme est particulièrement utile dans la recherche des solutions d'une équation du second degré.
Ainsi, les zéros de la fonction sont les solutions de l'équation ( ? + 2 ) ( ? + 3 ) = 0 . Nous pouvons résoudre ces deux équations séparément pour obtenir ? = − 2 et ? = − 3 comme étant les zéros de la fonction.
Une équation est une égalité entre deux expressions mathématiques, donc une formule de la forme A = B, où les deux membres A et B de l'équation sont des expressions où figurent une ou plusieurs variables, représentées par des lettres.
Pour que f(x)=0, il faut forcément que le numérateur soit nul. Donc il faut résoudre l'équation suivante: C'est une équation du 3e degré, mais avec une racine évidente en x=0, donc tu peux en tirer une équation du 2e degré, qu'il faut résoudre.
Une équation du premier à deux ou plusieurs inconnues admet une « infinité » de solutions. Activité : soit l'équation 2x + 4 y = 24 ; ( par transformation on obtient l'équation : y = - x + , ou y = - 0,5 x + 6 ) . L'égalité est vraie si la valeur de "x" et "y" vérifie l'égalité .
2) EXPLICATION DU CUBE D'UN NOMBRE
L'exposant 3 qui apparaît en haut à gauche du nombre 7 indique que ce nombre doit être multiplié deux fois par lui-même : 7 x 7 x 7 Le résultat est 147. Des nombres au carré peuvent s'additionner avec d'autres nombres au carré ou avec des nombres au cube, et vice versa.
La racine cubique de 125 est 5, car 5 x 5 x 5 = 125.
Par exemple, la racine cubique de 27 est égale à 3, car 3 × 3 × 3 = 27 ; et la racine cubique de -8 est -2 car (-2) × (-2) × (-2) = -8.