Quelle est la différence entre les échantillons appariés et les échantillons indépendants ? Contrairement aux échantillons appariés, les échantillons indépendants considèrent deux populations distinctes non apparentées, chaque individu n'appartenant qu'à un seul groupe.
L'idée. Si on souhaite comparer deux échantillons (i.i.d) gaussiens, il nous suffit en fait de comparer leurs paramètres : leur moyenne μ1 et μ2, et leur variance σ21 et σ22. La méthodologie la plus classique est d'effectuer de manière séquentielle : Un test d'égalité des variances.
Pour chaque sujet du premier échantillon, on peut sélectionner un sujet pour le second (exemples (4) à (6)) ou plusieurs (exemple (7)). Dans tous ces cas, on parle d'échantillons appariés (ou de séries appariées).
Lorsque les échantillons peuvent être considérés indépendants, on applique le test de Mann et Whitney pour 2 échantillons, celui de Kruskal et Wallis pour un nombre quelconque d'échantillons. Lorsque on a affaire à deux échantillons appariés (c'est-à-dire non indépendants), on applique le test de Wilcoxon.
Le test de Kruskal-Wallis est un test non paramétrique à utiliser lorsque vous êtes en présence de k échantillons indépendants, afin de déterminer si les échantillons proviennent d'une même population ou si au moins un échantillon provient d'une population différente des autres.
En statistique, le test de Wilcoxon-Mann-Whitney (ou test U de Mann-Whitney ou encore test de la somme des rangs de Wilcoxon) est un test statistique non paramétrique qui permet de tester l'hypothèse selon laquelle les distributions de chacun de deux groupes de données sont proches.
En effet, un échantillon est considéré indépendant lorsque l'on prélève un échantillon aléatoirement au sein de différentes populations. Ils traitent des données relatives à différents groupes de répondants, comme par exemple «hommes et femmes» , au sein d'une analyse de données.
Qu'est-ce qu'un échantillon représentatif ? Un échantillon représentatif est un sous-ensemble de données, souvent issues d'un groupe plus large, qui présente les mêmes caractéristiques que le groupe initial.
Un échantillon représentatif est essentiellement un petit nombre d'individus qui reflètent les propriétés de votre population cible avec un haut degré de précision. Il n'est donc pas nécessaire d'enquêter sur l'ensemble de la population cible.
Il s'agit du test de Kruskal-Wallis, mesure de l'association entre deux variables qualitatives. Le croisement de deux questions qualitatives produit un tableau que l'on désigne généralement par « tableau de contingence ».
Le test T est une statistique inférentielle utilisée pour évaluer les différences entre les moyennes de deux groupes. Le test T est généralement utilisé lorsque les ensembles de données suivent une distribution normale et peuvent avoir des variances inconnues.
Le test de McNemar permet de déterminer si des proportions appariées sont différentes. Vous pouvez par exemple l'utiliser pour déterminer si un programme de formation à un effet sur la proportion de participants qui répondent correctement à une question.
Si les valeurs d'un échantillon influencent les valeurs de l'autre, les échantillons sont dépendants. Si les valeurs d'un échantillon n'apportent aucune information concernant celles de l'autre, les échantillons sont indépendants.
Si la statistique-t est supérieure à la valeur critique, alors la différence est significative. Si la statistique-t est inférieure, il n'est pas possible de différencier les deux nombres d'un point de vue statistique.
L'analyse de variance ou ANOVA permet de faire une comparaison des moyennes entre plusieurs populations. Dans le cas particulier où l'on ne désire comparer entre-elles que 2 populations, on utilise généralement le test de Student, une version particulière de l'ANOVA.
La taille de l'échantillon dépend du niveau de précision souhaité Mais revenons à l'échantillon représentatif de 30 répondants. En pratique, le strict minimum que l'on recommande à nos clients est généralement autour de 100.
On détermine l'intervalle d'échantillonnage k en divisant la population N par la taille de l'échantillon que l'on souhaite obtenir. On sélectionne un nombre qui correspond à l'origine choisie au hasard. Enfin, à partir de ce premier nombre, on sélectionne chaque kème individu.
L'enquête-échantillon doit être correctement définie et organisée. Si on pose les mauvaises questions, l'information recueillie ne permettra pas de répondre aux objectifs de l'enquête. Si on pose les questions aux mauvaises personnes, l'information ne représentera pas bien la population à laquelle on s'intéresse.
Deux types d'échantillons peuvent être distingués : les échantillons non-probabilistes et les échantillons probabilistes. Les sujets ou les objets sont choisis selon une procédure pour laquelle la sélection n'est pas aléatoire.
C'est la somme des carrés des écarts par rapport à la moyenne / nombre de degrés de liberté = SCE/ddl (ceci lorsque le nombre d'individus composant l'échantillon est réduit ; sinon, utiliser N'=N). La variance est le carré de l'écart-type.
Pour comparer deux moyennes, il faut habituellement employer le test «T» de Student, qui suppose la normalité des distributions et l'égalité des variances (test paramétrique), hypothèses invérifiables avec des effectifs faibles.
Les tests de Mann-Whitney servent à vérifier que deux échantillons d'une population ont une position équivalente.
L'effectif de l'échantillon a une influence sur l'intervalle de confiance et la puissance du test. En général, plus l'échantillon est grand, plus l'intervalle de confiance est étroit. En outre, un effectif d'échantillon plus grand donne au test plus de puissance pour détecter une différence.
Interpréter les résultats: après avoir effectué le test de Wilcoxon, il est important d'interpréter les résultats.La valeur p indique la probabilité d'observer une différence aussi extrême que celle observée, en supposant que l'hypothèse nulle est vraie.Si la valeur p est inférieure au niveau de signification ( ...