Deux vecteurs sont égaux si ils ont la même direction, le même sens et la même norme. Cela signifie que si deux vecteurs →AB et →CD sont égaux, alors le quadrilatère ABDC est un parallélogramme (Attention à l'ordre des lettres ! Il s'agit du quadrilatère ABDC et non ABCD.)
Définition : Deux vecteurs non nuls ��Y⃗ et ��⃗ sont colinéaires signifie qu'ils ont même direction c'est à dire qu'il existe un nombre réel k tel que ��Y⃗ = k��⃗. Remarque : Le vecteur nul est colinéaire à tout vecteur du plan. Exemple : ��⃗ = −3��Y⃗ ��Y⃗ et ��⃗ sont colinéaires.
Un vecteur est défini par un sens, une direction et une norme. La direction du vecteur est celle de la 'droite' dans laquelle est inclus le vecteur, le sens est donné par l'orientation du segment: 'vers la gauche' ou bien 'vers la droite', la norme correspond à la longueur du segment.
Deux vecteurs non nuls sont égaux si et seulement si ils ont la même direction, le même sens et la même norme.
Si, pour n'importe quel nombre choisi, deux expressions littérales donnent le même résultat, alors on dit que ces expressions littérales sont égales. Exemples : Pour n'importe quel nombre choisi pour x on a x+7=2x+10−x−3 donc les expressions x+7 et 2x+10−x−3 sont égales. +21 et B=7(x2 +2)+7 sont égales.
Pour calculer la norme d'un vecteur, il faut utiliser la formule ‖ v → ‖ = v x 2 + v y 2 . Pour calculer les coordonnées d'un vecteur, nous utilisons la formule A B → = ( x B − x A y B − y A ) .
Pour faire simple disons que la direction est l'orientation d'un segment dans l'espace et son sens un des côtés du segment, par exemple la direction verticale, horizontale, oblique (par rapport au sol) et son sens sera le haut, le bas, l'ouest, etc.
Le coefficient directeur de (D) est connu lorsque l'équation de (D) est mise sous la forme y = mx + p appelée équation réduite de (D).
Les vecteurs AB et CD sont égaux, en effet ils ont : même longueur : AB = CD même direction : (AB) // (CD) même sens : le sens de A vers B est le même que le sens de C vers D. Le vecteur qui a une longueur nulle est appelé vecteur nul et on le note 0 .
Étymologiquement, colinéaire signifie sur une même ligne : en géométrie classique, deux vecteurs sont colinéaires si on peut en trouver deux représentants situés sur une même droite. sont parallèles. Cette équivalence explique l'importance que prend la colinéarité en géométrie affine.
On trouve les coordonnées de chaque vecteur. On regarde si les coordonnées des vecteurs sont proportionnelles. Si les coordonnées sont proportionnelles, alors les vecteurs sont colinéaires. Si les coordonnées ne sont pas proportionnelles, alors les vecteurs ne sont pas colinéaires.
les vecteurs ont la même direction ou bien l'un des deux vecteurs est le vecteur nul 0 ; les vecteurs u et v sont colinéaires si et seulement si il existe un nombre réel k tel que u → = k v → \overrightarrow{u}=k\overrightarrow{v} u =kv .
Deux vecteurs ⃗ u (x;y) et ⃗ v (x′;y′) sont colinéaires si et seulement si : Méthode 1 : x × y ′ − x ′ × y = 0 x\times y' - x'\times y=0 x×y′−x′×y=0. Méthode 2 : il existe une réel k tel que : x ′ = k x x'=kx x′=kx et y ′ = k y y'=ky y′=ky.
Ainsi un vecteur possède une longueur, la distance entre le point de départ et d'arrivée, une direction (si le déplacement n'est pas nul, c'est la droite contenant le point de départ et d'arrivée) et un sens, depuis le départ jusqu'à l'arrivée.
Le sens du vecteur est le sens du déplacement de son origine vers son extrémité et sa norme est la distance entre les deux points (ou la longueur du segment entre les deux points).
Propriété Le vecteur (-b\: ; a) est un vecteur directeur de la droite d'équation ax + by + c = 0. Logique Réciproquement, si le vecteur (-b \:; a) est un vecteur directeur de d, alors une équation cartésienne de d est ax + by + c = 0 (avec c à déterminer).
Pour calculer les coordonnées de la somme de deux vecteurs, on additionne les coordonnées de chacun des vecteurs. Pour calculer les coordonnées de la différence de deux vecteurs, on soustrait les coordonnées de chacun des vecteurs.
On appelle vecteur normal de la droite (D) tout vecteur (non nul) orthogonal à un vecteur directeur de la droite. Si l'équation cartésienne de (D) est ax+by+c=0, alors un vecteur normal de (D) est le vecteur de coordonnées (a,b).
Coordonnées de la somme de deux vecteurs
alors la somme des deux vecteurs a pour coordonnées u → + v → ( x + x ′ y + y ′ ) .
x(AB*)=x(B)-x(A) c'est à dire l'abscisse du point B moins l'abscisse du point A. y(AB*)=y(B)-y(A) c'est à dire l'ordonnée du point B moins l'ordonnée du point A. Remarque : Les coordonnées du vecteur AB* représentent le chemin horizontal et vertical qui permet d'aller du point A au point B.
Points Clés
Lorsque deux vecteurs sont parallèles, l'angle entre eux est 0 ∘ ou 1 8 0 ∘ .
Pour trouver les coordonnées d'un vecteur dans une base, on écrit l'équation (vectorielle) caractéristique on convertit cette équation en syst`eme numérique on résout ce syst`eme, qui a une solution unique la ligne solution est la ligne de coordonnées cherchée.