L'écart-type ne peut pas être négatif. Un écart-type proche de signifie que les valeurs sont très peu dispersées autour de la moyenne (représentée par la droite en pointillés). Plus les valeurs sont éloignées de la moyenne, plus l'écart-type est élevé.
Pour comprendre les résultats du calcul de l'écart type, voici ce qu'il faut retenir : Entre 0 et 3 %, la volatilité de l'actif est très faible et le risque est moindre. Entre 3 et 8 %, l'actif est peu volatil et le risque est faible.
Une valeur d'écart type élevée indique que les données sont dispersées. D'une manière générale, pour une loi normale, environ 68 % des valeurs se situent dans un écart type de la moyenne, 95 % des valeurs se situent dans deux écarts types et 99,7 % des valeurs se situent dans trois écarts types.
Comment calculer l'écart-type
Pour calculer l'écart-type, on procède ainsi : 1 - On calcule la moyenne arithmétique de la série. 2 - On calcule le carré de l'écart à la moyenne de chacune des valeurs de la série. 3 - On calcule la somme des valeurs obtenues.
Pour deux ensembles de données ayant la même moyenne, celui dont l'écart-type est le plus grand est celui dans lequel les données sont les plus dispersées par rapport au centre. L'écart-type est égal à 0 zéro si toutes les valeurs d'un ensemble de données sont les mêmes (parce que chaque valeur est égale à la moyenne).
La variance et l'écart-type nous permettent de quantifier à quel point les données sont dispersées ou regroupées autour de la moyenne. Une variance élevée indique une plus grande dispersion, tandis qu'une variance faible indique une plus grande concentration des données.
On effectue leur différence. Exemple 1 : Calculons la moyenne de la série des notes de Pierre : 4 • 9 • 12 • 13 • Somme des valeurs : 4 + 9 + 12 + 13 = 38 • Effectif total : 4 (il y a 4 valeurs) • Moyenne : 38 : 4 = 9,5 La moyenne de cette série est de 9,5. C'est comme si Pierre avait obtenu 4 fois la note 9,5.
L'écart-type est un outil statistique qui permet d'estimer la dispersion des valeurs par rapport à la moyenne. Plus l'écart-type a une valeur élevée, plus les données sont dispersées par rapport à la moyenne. L'unité de l'écart-type est la même que celle de la moyenne.
Une analyse des écarts est un outil de gestion de projet qui permet d'identifier les moyens d'aller d'un point A à un point B. Bien qu'elle puisse être utilisée à tout moment, vous en tirerez tout son potentiel en l'appliquant de manière stratégique à une initiative ou un projet clairement identifié.
Exemple : Notation des professeurs X et Y : - L'étendue des notes données par le professeur X est de (13-7)=6, ce qui signifie que l'écart maximum entre deux notes du professeur X est de 4. => La dispersion des notes du professeur Y est donc beaucoup plus forte que celle des notes du professeur X.
La règle des trois sigmas exprime une heuristique fréquemment utilisée : la plupart des valeurs se situent à moins de trois fois l'écart-type de la moyenne. Pour de nombreuses applications pratiques, ce pourcentage de 99,7 % peut être considéré comme une quasi-certitude.
La formule avec n-1 ne concerne pas l'écart type de l'échantillon. Le n-1 sert surtout à avoir un estimateur sans biais lorsque tu remplaces la moyenne par la moyenne empirique.
L'étendue d'une série statistique est égal à la différence entre la plus grande et la plus petite valeur de la série. Interprétation : - Plus l'étendue d'une série est grande, plus la série est hétérogène. - Plus l'étendue est petite, plus la série est homogène.
Les écarts montrent de façon claire à quel point l'objectif stratégique, la situation optimale et la situation actuelle divergent. L'écart entre l'objectif et la situation optimale est appelé écart stratégique, tandis que l'écart entre la situation optimale et la situation actuelle est appelé écart opérationnel.
Écart sur résultat = Résultat réalisé – Résultat préétabli. L'écart sur résultat est d'abord divisé en écart sur marge brute et un écart sur charges discrétionnaires qui peuvent eux-mêmes être subdivisé.
Variance par rapport à l'écart-type
La différence entre la variance et l'écart-type comme indicateur de dispersion est donc que l'écart-type mesure la distance moyenne par rapport à la moyenne et que la variance mesure la distance moyenne au carré par rapport à la moyenne.
Interpréter des résultats signifie donner du sens aux résultats et nous permettre de verifier si notre hypothèse est vraie ou fausse. Comparer les expériences 2 à 2 : on compare l'expérience témoin avec une autre expérience. Les 2 expériences comparées ne doivent avoir qu'UNE SEULE DIFFERENCE !
20/20, Excellent ; 16/20 à 19/20, Très bien ; 14/20 à 16/20, Bien ; 12/20 à 13/20, Assez bien ; 10/20 à 11/20, Passable ; 5/20 à 8/20, Insuffisant ; 0/20 à 4/20, Médiocre.
La moyenne est l'indicateur le plus simple pour résumer l'information fournie par un ensemble de données statistiques : elle est égale à la somme de ces données divisée par leur nombre.
Définition : L'écart-type d'une série statistique
De même, plus l'écart-type est petit, moins la distance moyenne entre la moyenne et chacun des points correspondants aux valeurs de cette série est importante, ce qui signifie qu'ils sont moins dispersés.
Moyenne : La moyenne arithmétique est la somme des valeurs de la variable divisée par le nombre d'individus. La variance : La variance est la moyenne des carrés des écarts à la moyenne. L'écart-type : c'est la racine carrée de la variance.