Alors je peux tout simplement te dire : tu utilises le cosinus, le sinus ou la tangente quand tu as les données pour pouvoir les calculer (i.e soit le côté adjacent et l'hypoténuse, soit le côté opposé et l'hypoténuse, soit le côté adjacent et le côté opposé).
Généralement, on utilise la loi des cosinus dans deux situations : lorsqu'on connait les mesures de deux côtés et de l'angle qu'ils forment dans le triangle ce qui permet de trouver la mesure du troisième côté (comme dans le triangle de gauche ci-dessous);
La loi des sinus permet de trouver la mesure d'un côté ou d'un angle dans un triangle quelconque. Pour ce faire, il faut connaitre la mesure d'un angle, de son côté opposé et d'un autre côté ou d'un autre angle.
Utiliser la trigonométrie pour trouver les longueurs des côtés d'un triangle rectangle. On peut utiliser les lignes trigonométriques pour calculer la longueur de l'un des côtés d'un triangle rectangle.
On définit le cosinus comme étant le rapport entre le côté adjacent à l'angle par rapport à l'hypoténuse. Le sinus est le rapport entre le côté opposé à l'angle par rapport à l'hypoténuse.
La fonction cosinus est utilisée couramment pour modéliser des phénomènes périodiques comme les ondes sonores ou lumineuses ou encore les variations de température au cours de l'année.
Dans un triangle rectangle, le cosinus d'un angle, noté « cos », est égal au rapport (quotient) de la longueur du côté adjacent à cet angle sur la longueur de l'hypoténuse.
En géométrie, le sinus d'un angle dans un triangle rectangle est le rapport entre la longueur du côté opposé à cet angle et la longueur de l'hypoténuse. La notion s'étend aussi à tout angle géométrique (compris entre 0 et 180°). Dans cette acception, le sinus est un nombre compris entre 0 et 1.
En effet, la fonction cosinus est périodique de période 2π, et on sait que sur l'intervalle [0,2π[, elle ne s'annule qu'aux points π/2 et 3π/2. Ainsi, pour tout x ∈ R, cos(x) = 0 si et seulement si x = π/2 + k×2π avec k ∈ Z OU x=3π/2 + l×2π avec l ∈ Z : on retrouve bien l'ensemble des multiples impairs de π/2.
Trigonométrie Exemples. La valeur exacte de cos(45°) cos ( 45 ° ) est √22 . Le résultat peut être affiché en différentes formes.
Si 0 ≤ θ ≤ π, sinθ est positif. Si π/2 ≤ θ ≤ 3π/2, cosθ est négatif. Quand θ est entre π et 3π/2, le sinus et le cosinus sont tous les deux négatifs. Et quand θ est dans le quatrième quadrant (en bas à droite) le cosinus est positif, et le sinus est négatif.
Une phrase permet de se rappeler des trois premiers théorèmes à la fois : cah soh toa pour « casse-toi » : Cosinus = Adjacent sur Hypoténuse ; Sinus = Opposé sur Hypoténuse ; Tangente = Opposé sur Adjacent. Certaines personnes préfèrent soh cah toa.
L'astronome et mathématicien grec Hipparque de Nicée (-190 ; -120) construisit les premières tables trigonométriques sous la forme de tables de cordes : elles faisaient correspondre à chaque valeur de l'angle au centre (avec une division du cercle en 360°), la longueur de la corde interceptée dans le cercle, pour un ...
Trigonométrie Exemples. La valeur exacte de sin(30°) sin ( 30 ° ) est 12 .
Calcul du sinus
Le résultat est : sin 50° = 0,766 (au millième près).
La valeur exacte de sin(90°) sin ( 90 ° ) est 1 .
On le lit sur le cercle. Si l'angle est nul, M=I et donc le sinus, en ordonnée, est égal à zéro.
cos(x)=0 si et seulement s'il existe k∈Z tel que x=π2+kπ.
cos 12° 0,978 ; cos 20° 0,94 ; cos 45° 0,707 ; cos 60° = 0,5 cos 90° = 0 ; cos 0° = 1.
Les sinus maxillaires sont situés dans le maxillaire (la mâchoire supérieure), de chaque côté du nez, derrière les joues et sous les yeux. De forme pyramidale, ce sont les plus gros sinus paranasaux. Les sinus frontaux sont situés dans l'os frontal, au-dessus du nez et derrière les sourcils.