Les trois points A 1 , A 2 , A 3 sont alignés si et seulement si les vecteurs A 1 A 2 → et A 1 A 3 → sont colinéaires, donc si et seulement si le déterminant des vecteurs A 1 A 2 → , A 1 A 3 → , est nul.
Les points A, B et C sont alignés si et seulement si les vecteurs ⃗ AB et ⃗ AC sont colinéaires. Les droites (AB) et (CD) sont parallèles si et seulement si les vecteurs ⃗ AB et ⃗ CD sont colinéaires.
En géométrie euclidienne, l'alignement peut être caractérisé par un cas d'égalité de l'inégalité triangulaire : trois points sont alignés si l'un d'entre eux (que l'on peut noter B) appartient au segment joignant les deux autres (notés A et C), autrement dit si les distances satisfont la relation AB + BC = AC.
Prouver un alignement de trois points
sont colinéaires. Angle : trois points A, B, C sont alignés si l'angle ABC est nul ou plat. sont égaux, on retrouve le parallélisme des droites (AB) et (AC).
Comment prouver que 3 points sont alignés avec Pythagore ? On a donc a BCD = a CBA + a ABD = 90° + 90° = 180° L'angle a CBD étant plat alors les points B, C et D sont alignés.
Si l'affixe d'un point est réelle, le point se situe sur l'axe des abscisses, donc son argument est égal à π forcément, l'angle est plat. Donc, les points A, B et C sont alignés. Retenez le résultat de cet exemple : Si l'affixe est réelle, alors l'argument est égal à π et les points sont alignés.
Si trois points appartiennent à la même droite, alors ils sont alignés.
On dit que des points sont alignés s'ils appartiennent à une même droite.
La notation d'une droite est généralement écrite à l'aide de deux points appartenant à cette droite. Trois points ou plus qui appartiennent à la même droite sont appelés points alignés. Si un point n'appartient pas à la même droite que les autres points, on dit que cet ensemble de points est non aligné.
L'alignement est la détermination par l'autorité administrative de la limite du domaine public routier au droit des propriétés riveraines. Il est fixé, soit par un plan d'alignement, soit par un arrêté d'alignement individuel (Code de la voirie routière, art. L 112-1).
Conclure. On place l'abscisse du point A dans l'équation de la droite, et on conclut : Si l'on obtient bien l'ordonnée de A, alors A appartient à la droite. Si l'on obtient un nombre différent de l'ordonnée de A, alors A n'appartient pas à la droite.
La relation AB + BC = AC (qui concerne des distances) n'est vérifiée que si le point B est sur le segment [AC]; de manière générale on ne peut affirmer que AB + BC AC. si et seulement si ABCD est un parallélogramme. L'addition des vecteurs a des propriétés semblables à celles de l'addition des nombres réels.
Soekarno, Nehru, Zhou Enlai, Nasser, Aït Ahmed, Tito, Nkrumah, Sékou Touré, Nyerere, Ben Barka, Indira Gandhi, Boumédienne, Castro, etc.
Un angle est formé par deux demi-droites de même origine. L'origine, souvent noté O, est appelé le sommet de l'angle et les demi-droites sont appelées les côtés de l'angle. On mesure l'angle en degrés (noté °).
Autrement dit, c'est un peu comme deux droites d'un même plan. Pour démontrer que deux plans sont sécants, il suffit donc de montrer que deux vecteurs normaux associés respectivement aux deux plans sont non colinéaires.
Points alignés
On dit que trois points ou plus sont alignés s'ils sont sur une même droite. A, B et C sont alignés car A, B et C sont sur la même droite (d).
Pour nommer une droite, on utilise le nom des deux points situés à ses extrémités et on les écrit entre parenthèses. Par exemple, une droite allant du point A au point B peut s'écrire (AB). Il ne faut pas confondre avec [AB], qui est le nom du segment ayant pour extrémités les points A et B.
Définition 1.
Deux droites ont la même direction si et seulement si elles sont parallèles ou confondues. On dit que deux vecteurs et sont colinéaires lorsqu'ils ont la même direction. Par conséquent, deux droites qui n'ont pas la même direction sont sécantes.
ABC est un triangle équilatéral. Ses trois angles ont la même mesure. Cette mesure est donc égale à : 180° / 3 = 60°.
Les 3 angles du haut de la figure a, b et c forment un angle dit “plat”. C'est à dire que la somme des angles a, b et c fait 180° : a + b + c = 180°.
On en conclut que l'ensemble des points M d'affixe z est la médiatrice de [AB] avec A et B les points d'affixes z_A et z_B. Ainsi, l'ensemble des points M d'affixe z est la médiatrice de [AB] avec A et B les points d'affixe z_A = -3+2i et z_B = 4i.
On rappelle la condition pour que plusieurs points appartiennent au même cercle : ils doivent être à égale distance du centre du cercle.
En mathématiques, le plan complexe (aussi appelé plan d'Argand, plan d'Argand-Cauchy ou plan d'Argand-Gauss) désigne un plan, muni d'un repère orthonormé, dont chaque point est la représentation graphique d'un nombre complexe unique. Le nombre complexe associé à un point est appelé l'affixe de ce point.
Relatif à ce qui n'est pas aligné, c'est-à-dire qui n'est pas rangé sur une ligne. Relatif à un état, un gouvernement, etc., qui affichait une indépendance vis-à-vis des Etats-Unis et de l'Union soviétique lors de la Guerre froide.