Comment savoir si une dérivée est croissante ?

Interrogée par: Constance Cousin  |  Dernière mise à jour: 13. Juni 2024
Notation: 4.2 sur 5 (25 évaluations)

si f ' est positive sur I la fonction est croissante sur I. si f ' est négative sur I la fonction est décroissante sur I. Remarques : pour le vocabulaire mathématique, "positive" signifie "positive ou nulle" (et "négative" veut dire "négative ou nulle").

Comment savoir si une dérivée est croissante ou décroissante ?

Si une fonction "f" est dériable sur un intervalle I alors: Si sa dérivée est positive sur cet intervalle alors la fonction y est croissante. Si sa dérivée est négative sur cet intervalle alors la focnction y est décroissante. Si sa dérivée est nulle sur cet intervalle alors la fonction y est constante.

Comment faire pour savoir si une fonction est croissante ?

Théorème : Soit I un intervalle de R et f:I→R f : I → R dérivable. Alors : f est croissante sur I si et seulement si, pour tout x∈I x ∈ I , f′(x)≥0 f ′ ( x ) ≥ 0 ; f est strictement croissante sur I si et seulement si f′≥0 f ′ ≥ 0 et si f′ n'est identiquement nulle sur aucun intervalle [a,b]⊂I [ a , b ] ⊂ I avec a<b .

Comment montrer qu'une application est croissante ?

Pour montrer qu'une fonction f(x) est croissante, il suffit de montrer f(x + a) > f(x) si a est strictement positif ou ce qui revient au même que f(x + a) - f(x) > 0 si a > 0. Avec f(x) = x3 on y arrive comme suit : (x+a)3−x3=x3+3ax2+3a2x+a3−x3.

Comment justifier qu'une fonction est décroissante ?

Si [a,b] est un intervalle du domaine d'une fonction f, on dit que la fonction f est décroissante dans l'intervalle [a,b] si et seulement si pour tout élément x1 et x2 de [a,b], si x1<x2, alors f(x1)≥f(x2).

Comprendre SIGNE DE LA DÉRIVÉE ↔︎ VARIATIONS - Première

Trouvé 25 questions connexes

Pourquoi une fonction est croissante ?

Une fonction est dite strictement croissante sur un intervalle de x si les valeurs de y ne font qu'augmenter. Une fonction est dite strictement décroissante sur un intervalle de x si les valeurs de y ne font que diminuer.

Quand la fonction est décroissante ?

Une fonction f est décroissante sur un intervalle I lorsqu'elle inverse l'ordre des nombres sur cet intervalle. Autrement dit, quelque soient les réels et appartenant à I, si alors f ( a ) ≥ f ( b ) .

Comment déterminer le sens de variation d'une fonction dérivée ?

La dérivée d'une fonction joue un rôle essentiel dans l'étude du sens de variation. Ainsi: ✅ Si la dérivée est positive, cela signifie que la fonction est croissante dans cet intervalle. ❌ Si la dérivée est négative, cela indique une décroissance.

Quand Dit-on qu'une suite est croissante ?

Définitions : • Une suite est croissante si chaque terme est supérieur ou égal à son précédent : un+1 ≥ un ou: Une suite est décroissante si chaque terme est inférieur ou égal à son précédent : un+1 ≤ un ou: Une suite est monotone si elle est croissante ou si elle est décroissante.

Quand Dit-on qu'une application affine est croissante ?

Lorsqu'une application affine est croissante, sa représentation graphique est une droite « montante » de la gauche vers la droite. Lorsqu'une application affine est décroissante sa représentation graphique est une droite « descendante » de la gauche vers la droite.

Comment calculer la fonction dérivée d'une fonction ?

Soit f une fonction affine définie sur par : f(x) = ax + b où a et b sont deux réels avec a ≠ 0. Alors sa dérivée est la fonction f′ définie sur par : f′(x) = a. f est de la forme u + v avec u(x) = ax et v(x) = b. Alors f′(x) = u′(x) + v′(x) = a × 1 + 0 = a.

Comment prouver qu'une fonction est paire ou impaire ?

Conseil On peut s'aider de la courbe de f pour conjecturer si elle paire, impaire ou ni l'un ni l'autre. Si f(−x)=f(x) alors f est paire. Si f(−x)=−f(x) alors f est impaire.

Comment trouver le sens de variation d'une fonction affine ?

Le sens de variation d'une fonction affine dépend du signe du coefficient directeur a a a. Ce coefficient directeur représente la « pente » de la droite représentative de f f f. Si a > 0 a > 0 a>0 la fonction est croissante, la droite « monte ». Si a = 0 a=0 a=0 la fonction est constante, la droite est horizontale.

Quand la dérivée s'annule sans changer de signe ?

Attention, si la dérivée s'annule en un point mais ne change pas signe autour de ce point, il ne s'agit pas d'un extremum. Par exemple, si f(x) = x3 alors f′(x)=2x2 et f′(0) = 0 mais f′ ne change pas de signe et 0 n'est pas un extremum de f. 1.

Comment déterminer le signe d'une fonction ?

Pour déterminer le sens de variation d'une fonction f , on étudie le signe de sa dérivée : f ′ ( x ) . Pour interpréter ce signe : Si f ′ ( x ) a le signe + sur un intervalle, alors f est croissante sur cet intervalle. Si f ′ ( x ) a le signe - sur un intervalle, alors f est décroissante sur cet intervalle.

Comment calculer la dérivée d'un nombre ?

Comment calculer le nombre dérivé ? Pour calculer le nombre dérivé, il faut utiliser la formule suivante : lim h → 0 f ( a + h ) − f ( a ) h . Il est également possible d'évaluer la fonction dérivée au point donné.

Quand une fonction est strictement croissante ?

f est strictement croissante si et seulement si pour tout x ∈ I, f ' (x) ≥ 0 et de plus l'ensemble des points où la dérivée f ' s'annule est d'intérieur vide (c'est-à-dire qu'il ne contient aucun intervalle non trivial).

Comment Appelle-t-on une suite qui n'est ni croissante ni décroissante ?

Une fonction peut-elle être ni croissante ni décroissante ? - Quora. Oui, cela s'appelle une fonction non monotone. C'est une fonction qui ne croit ni ne décroit.

Comment Appelle-t-on une suite croissante et décroissante ?

Suites monotones

Une suite réelle monotone est une fonction monotone (c'est-à-dire croissante ou décroissante) de ℕ dans ℝ. De même, une suite réelle est dite strictement monotone lorsqu'elle est strictement croissante ou strictement décroissante.

Quand la dérivée est nulle ?

si la dérivée est nulle sur tout l'intervalle, la fonction est constante sur cet intervalle. Exemple : la fonction est définie sur . Sa dérivée est toujours positive (ou nulle pour x = 0). Cette fonction est donc croissante sur son domaine de définition.

Comment déterminer les variations d'une suite ?

Pour déterminer le sens de variation d'une suite (un), on peut utiliser l'une des règles suivantes : a) On étudie le signe de la différence un+1 − un. ▶ Si un+1 − un est positive, alors la suite (un) est croissante. ▶ Si un+1 − un est négative, alors la suite (un) est décroissante.

Quand la dérivée s'annule ?

Si la dérivée est d'abord positive , s' annule puis devient négative la fonction passe par un « maximum ». Si la dérivée est d'abord négative , s' annule puis devient positive la fonction passe par un « minimum ». Point d'inflexion : L'annulation de la dérivée sans changement de signe correspond à un point d'inflexion.

C'est quoi le sens de variation d'une fonction ?

En mathématiques, les variations d'une fonction réelle d'une variable réelle sont le caractère croissant ou décroissant des restrictions de cette fonction aux intervalles sur lesquels elle est monotone. Ces informations sont couramment rassemblées dans un tableau de variations.

Quelle est le sens de variation de la fonction inverse ?

Sens de variation

Propriété : La fonction inverse est décroissante sur ] –∞ ; 0 [ et sur ] 0 ; +∞ [. Démonstration : sur ] 0 ; +∞ [

Quel est le sens de variation de la fonction f ?

2) Sens de variation et signe de la dérivée

f est croissante sur I si et seulement si pour tout x de I, f ′(x) est positive ou nulle. f est décroissante sur I si et seulement si pour tout x de I, f ′(x) est négative ou nulle. f est constante sur I si et seulement si pour tout x de I, f ′(x) = 0.