Si, pour tout entier naturel n, I_{n+1}-I_{n}\geqslant 0, on en déduit que la suite est croissante. Si, pour tout entier naturel n, I_{n+1}-I_{n}\leqslant 0, on en déduit que la suite est décroissante.
La fonction t↦∫b(t)a(t)f(x,t)dx pour t∈T est 'bien définie' si l'intégrale existe pour toutes les valeurs de t dans l'intervalle T.
Ainsi la fonction monotone définie par f : [ 0 , 1 ] → R , ∀ x ∈ [ 0 , 1 ] f ( x ) = 0 et f ( 1 ) = 1 est intégrable et son intégrale vaut de façon évidente .
Comment justifier l'existence d'une intégrale ? L'existence d'une intégrale peut être justifiée à l'aide de plusieurs théorèmes mathématiques tels que le théorème de convergence monotone et le théorème de convergence dominée. Ces théorèmes garantissent l'existence de l'intégrale sous certaines conditions.
Théorème : L'intégrale sur un segment d'une fonction continue de signe constant est nulle si et seulement si cette fonction est nulle. Proposition : Soit f:[−a,a]→C f : [ − a , a ] → C une fonction continue par morceaux.
Si, pour tout entier naturel n, I_{n+1}-I_{n}\geqslant 0, on en déduit que la suite est croissante. Si, pour tout entier naturel n, I_{n+1}-I_{n}\leqslant 0, on en déduit que la suite est décroissante.
La différence entre primitive et intégrale est qu'une primitive est une fonction tandis qu'une intégrale est un réel exprimé comme une aire algébrique (pouvant être négatif).
Qu'appelle-t-on une intégrale impropre ? Si sur un certain intervalle le domaine sous la courbe de la fonction est illimité, alors l'intégrale de sur cet intervalle est dite impropre. C'est le cas si au moins l'une des bornes d'intégration est ou .
Théorème de continuité sous l'intégrale: Soient I et J deux intervalles de R et f une fonction définie sur I × J vérifiant: 1. pour tout x ∈ I, la fonction t ↦→ f(x, t) est continue par morceaux sur J ; 2. pour tout t ∈ J, la fonction x ↦→ f(x, t) est continue sur I ; 3.
Grossièrement, l'intégrale de f représente l'aire entre la courbe de f et l'axe des abscisses en comptant positivement ce qui est au-dessus et négativement ce qui en-dessous de cet axe. Si ton intégrale a l'air négative c'est que l'aire en-dessous de l'axe des abscisses est plus importante que celle qui est au-dessus.
Pour l'intervalle fermé moins 𝑎, 𝑎, si la fonction est impaire, l'intégrale définie de moins 𝑎 à 𝑎 de 𝑓 de 𝑥 par rapport à 𝑥 est égale à zéro. Et si elle est paire, on trouve qu'elle est égale à deux fois l'intégrale définie de zéro à 𝑎 de 𝑓 de 𝑥 par rapport à 𝑥.
Critères d'intégrabilité
Une fonction réglée est intégrable sur un intervalle fermé. En particulier on en déduit que les fonctions continues, continues par morceaux, monotones ou encore à variations bornées sont toutes intégrables sur un intervalle fermé.
Énoncé On appelle généralement fonction nulle la fonction constante définie sur l'ensemble des nombres réels ou complexes par : ƒ(x) = 0.
On retiendra qu'une intégrale peut être positive ou négative mais qu'une aire, elle, est toujours positive.
1 xα dx est convergente si et seulement si α < 1. Démonstration : C'est la même que la proposition précédente sauf qu'on regarde cette fois la limite quand a tend vers 0. Dans ce cas, a1−α convergera si et seulement si α < 1. En résumé : 1/x est toujours le cas critique et n'est jamais intégrable.
Définition : Soit une fonction réelle, localement intégrable sur un intervalle , avec ω ∈ R ou . On dit que l'intégrale ∫ a ω f ( t ) d t est absolument convergente si l'intégrale ∫ a ω | f ( t ) | d t est convergente.
Une intégrale impropre est convergente si sa valeur est finie, dans le cas contraire elle est divergente.
On obtient alors : I ( x ) = ∫ 0 arctan ( x ) u d u = [ u 2 2 ] 0 arctan ( x ) = 1 2 ( arctan . Quand tend vers , on a donc : lim x → + ∞ I ( x ) = π 2 8 . D'où : ∫ 0 + ∞ arctan ( t ) 1 + t 2 d t = π 2 8 .
Nous pouvons dire que si 𝑓 est intégrable sur l'intervalle fermé 𝑎 à 𝑏, alors l'intégrale définie entre 𝑎 et 𝑏 de 𝑓 de 𝑥 par rapport à 𝑥 est la limite lorsque 𝑛 tend vers ∞ de la somme de 𝑓 de 𝑥𝑖 fois Δ𝑥 pour des valeurs de 𝑖 de un jusqu'à 𝑛.
Le concept d'intégrale a été raffiné depuis son introduction au XVII e siècle par Leibniz et Newton, permettant ainsi de les calculer pour des fonctions de moins en moins régulières. On rencontre ainsi aujourd'hui les intégrales dites de Riemann, de Lebesgue ou de Kurzweil-Henstock.
f(t)dt. Lorsqu'on trouve une primitive d'une fonction f dans une table, ou qu'elle se déduit des tables à partir de quelques calculs algébriques, il n'y a rien d'autre à faire : L'intégrale est donnée par la Formule de Newton-Leibniz. (e2x + sin(x))dx.
1) Si F est une primitive de f il en est de même de F + k o`u k est une fonction constante. 2) Si F et G sont deux primitives de f sur un intervalle I, la différence F −G est une constante. Soit c ∈ I et k ∈ R. Si f admet une primitive F, il existe une unique primitive G de f qui vérifie G(c) = k.
Théorème : Soit I un intervalle de R et f:I→R f : I → R dérivable. Alors : f est croissante sur I si et seulement si, pour tout x∈I x ∈ I , f′(x)≥0 f ′ ( x ) ≥ 0 ; f est strictement croissante sur I si et seulement si f′≥0 f ′ ≥ 0 et si f′ n'est identiquement nulle sur aucun intervalle [a,b]⊂I [ a , b ] ⊂ I avec a<b .
Partie 1 : Fonctions croissantes et fonctions décroissantes
Lorsqu'on se promène sur la courbe en allant de la gauche vers la droite : Sur l'intervalle [0 ; 2,5], on monte, on dit que la fonction est croissante. Sur l'intervalle [2,5 ; 5], on descend, on dit que la fonction est décroissante.
Théorème Soient f une fonction dérivable sur un intervalle \text{I} et f ^ { \prime } la fonction dérivée de f . Si f ^ { \prime } est strictement positive sur \text{I,} sauf pour un nombre fini de réels où elle s'annule, alors f est strictement croissante sur \text{I.}