Il y a une différence significative si la moyenne du premier sondage n'est pas dans l'intervalle de confiance du deuxième sondage, et inversement.
Nous pouvons également vérifier cela en utilisant un test de variances. D'après ces observations, le test de Student à deux échantillons apparaît comme une méthode appropriée pour tester la différence des moyennes.
Un résultat est souvent considéré comme statistiquement significatif s'il a une faible probabilité de se produire par hasard et si sa valeur p est inférieure à un seuil prédéterminé (généralement 0,05 ou 0,01).
Si la statistique-t est supérieure à la valeur critique, alors la différence est significative. Si la statistique-t est inférieure, il n'est pas possible de différencier les deux nombres d'un point de vue statistique.
Soit p>0,05: la différence n'est pas significative, on ne peut pas conclure à une différence. Soit p≤0,05: la différence est significative, le risque pris est précisé, sa valeur est appelée degré de signification.
Lorsqu'un résultat est statistiquement significatif, il est peu probable qu'il apparaisse par hasard ou en raison d'une variation aléatoire. Il existe une valeur limite pour déterminer la signification statistique. Cette limite est le niveau de signification.
Une valeur-p de 0,05 signifie qu'il y a une chance sur 20 qu'une hypothèse correcte soit rejetée plusieurs fois lors d'une multitude de tests (et n'indique pas, comme on le croit souvent, que la probabilité d'erreur sur un test unique est de 5 %).
Comment calculer le seuil de signification en audit ? Le seuil de signification peut représenter un chiffre entre 1 et 5% des capitaux propres, 5 à 10% du résultat net ou du résultat courant ou encore de 1 à 3% du chiffre d'affaires. Tout montant inférieur au seuil de signification sera écarté des travaux de révision.
Définition. Différence entre deux statistiques dont on peut affirmer, avec moins de x chances sur 100 de se tromper, qu'elle n'est pas due au hasard seul. Exemple : différence significative à P = 0,01. Dans ce cas, la probabilité de se tromper en affirmant que la différence est significative n'est que de 1 %.
Elle représente la probabilité de faire une erreur de type 1, ou de rejeter l'hypothèse nulle si elle est vraie. Plus la valeur de p est petite, plus la probabilité de faire une erreur en rejetant l'hypothèse nulle est faible. Une valeur limite de 0,05 est souvent utilisée.
Donc le « p value » représente la probabilité de se tromper si on rejette H0. Par exemple, si p=0,2, cela signifie que si on rejette H0, on sait que ce jeu de données avait 20% de chance d'être obtenu alors que H0 était vraie.
Une variable est significative lorsque la statistique du test (t, f, etc.) calculée par Stata se trouve dans la zone de rejet de l'hypothèse nulle, on suppose donc que β>0 ou β<0 ou β≠0. On peut aussi utiliser la « p-value » pour déterminer si le coefficient passe le test de signification.
Pour comparer deux moyennes, il faut habituellement employer le test «T» de Student, qui suppose la normalité des distributions et l'égalité des variances (test paramétrique), hypothèses invérifiables avec des effectifs faibles.
Utilisez le test t ou le test z pour un échantillon pour comparer la moyenne d'un échantillon à une référence. Faites-le dans Excel en utilisant le logiciel de statistique XLSTAT.
Un test de Student peut être utilisé pour évaluer si un seul groupe diffère d'une valeur connue (test t à un échantillon), si deux groupes diffèrent l'un de l'autre (test t à deux échantillons indépendants), ou s'il existe une différence significative dans des mesures appariées (test de Student apparié ou à ...
Afin de déterminer si un échantillon est représentatif d'une population, on calcule l'intervalle I de fluctuation au seuil de 95% ainsi que la fréquence f dans l'échantillon. Si f \in I, alors l'échantillon est représentatif de la population.
Qu'est-ce qu'un échantillon représentatif ? Un échantillon représentatif est un sous-ensemble de données, souvent issues d'un groupe plus large, qui présente les mêmes caractéristiques que le groupe initial.
Un échantillon représentatif est essentiellement un petit nombre d'individus qui reflètent les propriétés de votre population cible avec un haut degré de précision. Il n'est donc pas nécessaire d'enquêter sur l'ensemble de la population cible.
La significativité statistique, ou seuil de signification, désigne le seuil à partir duquel les résultats d'un test sont jugés fiables. Autrement dit, ce seuil détermine la confiance dans la corrélation entre un test effectué et les résultats obtenus.
Lors d'un audit, le seuil de signification est le niveau au-dessous duquel les erreurs (ou risques d'erreurs) relevés ne sont pas de nature à remettre en cause la régularité et la sincérité des états financiers.
Cette valeur est égale à 2 fois la probabilité de la valeur que la statistique de test suppose comme supérieure ou égale à la valeur absolue de la valeur effectivement observée d'après votre échantillon (sous H 0). 2* P(ST > |1,785|) = 2 * 0,0371 = 0,0742. La valeur de p est donc ici de 0,0742.
Une valeur p, qui signifie valeur de probabilité, est une mesure statistique comprise entre 0 et 1. Elle est utilisée pour un test d'hypothèse. Dans des essais cliniques, elle est utilisée pour donner une indication qui détermine si un résultat observé dans un essai clinique peut être dû à un hasard ou non.
La puissance du test représente la probabilité de rejeter l'hypothèse nulle H0 lorsque l'hypothèse vraie est H1. Plus β est petit, plus le test est puissant. A titre d'exemple, regardons ce qu'il se passe à propos d'un test sur la moyenne.
Cela s'articule habituellement autour de l'hypothèse nulle (H0): si on accepte l'hypothèse nulle, l'hypothèse alternative (H1) est infirmée; inversement, si on rejette l'hypothèse nulle, l'hypothèse alternative est confirmée.