On dit qu'une suite est divergente et tend vers +∞ si, pour tout nombre réel A, à partir d'un certain rang, tous les termes de la suite sont supérieurs à A. On dit qu'une suite est divergente et tend vers –∞ si, pour tout nombre réel A, à partir d'un certain rang, tous les termes de la suite sont inférieurs à A.
On dit qu'une suite tend vers +∞ si tout intervalle de la forme ]A, +∞[ contient tous les termes de la suite sauf un nombre fini d'entre eux (c. -à-d. contient tous les termes de la suite à partir d'un certain rang).
Si une suite admet pour limite le nombre réel I on dit qu'elle est convergente vers I (ou qu'elle converge vers I ou qu'elle tend vers I). On note : ou lim u = I. La limite d'une suite est unique. Les suites , où k est un entier positif non nul, convergent vers 0.
On revient à la définition de la divergence vers ∞. Pour tout entier A, aussi grand soit-il, il existe un rang N au delà duquel tous les termes sont dans l'intervalle ]A ; +∞[. 5) Si une suite tend vers +∞ alors, elle est croissante.
La limite d'une suite, si elle existe, est unique. Une suite n'a pas nécessairement de limite. C'est le cas pour les suites alternées, c'est-à-dire qui alternent entre deux valeurs, ou pour celles dont les valeurs oscillent.
Nous pouvons rappeler que pour qu'une limite existe, il faut que les images de la fonction se rapprochent d'une valeur finie lorsque les valeurs d'entrée se rapprochent du point de chaque côté. Cela revient à dire que les limites à gauche et à droite de la fonction en ce point doivent exister et être égales.
Une fonction peut-elle être ni croissante ni décroissante ? - Quora. Oui, cela s'appelle une fonction non monotone. C'est une fonction qui ne croit ni ne décroit.
Comme la suite est non majorée, il existe au moins un terme up de la suite tel que up > A. Or la suite étant croissante, si l'on prend n supérieur à p, on aura un supérieur à up, c'est-à- dire, un supérieur à A. Donc on a prouvé que, à partir du terme up, tous les termes de la suite sont supérieurs à A.
Par le principe de récurrence, P(n) P ( n ) est vraie pour tout entier n n et on a bien démontré que la suite (un) ( u n ) est croissante. Si (un) et (vn) sont deux suites adjacentes, alors elles convergent vers la même limite.
Rappel : Dire qu'une suite (Un) est croissante signifie que pour tout entier n, Un+1 Un. Dire qu'une suite (Un) est décroissante signifie que pour tout entier n, Un+1 Un.
Le plus simple serait de le définir comme tout ce qui n'est pas fini. Par exemple, les diviseurs de 12 sont en nombre fini (1, 2, 3, 4, 6 et 12), par contre ses multiples sont en nombre infini (12, 24, 36, …).
- Limites à l'infini
Lorsque la variable x prend des valeurs très grandes (positivement ou négativement), on dit que x tend vers plus ou moins l'infini. Dans ce cas, on distingue les cas où f ( x ) f(x) f(x) se rapproche d'une valeur finie et ceux où f ( x ) f(x) f(x) s'éloigne vers l'infini.
une suite bornée n'est pas nécessairement convergente (contre-exemple : un = (–1)n est bornée — majorée par 1 et minorée par –1 — mais n'admet pas de limite) ; pour qu'une suite tende vers ±∞, il ne suffit pas qu'elle soit non bornée (contre-exemple : la suite qui vaut 0 pour n pair, et n pour n impair).
Une suite est convergente si elle tend vers un nombre fini ; une suite est divergente si elle tend vers l'infini ou si elle n'a pas de limite. Une suite (un) est convergente vers un nombre réel l si, pour tout intervalle I centré en l, il existe un rang p, à partir duquel les termes de cette suite appartiennent à I.
Si une suite n'est pas majorée alors elle tend vers +∞ Faux : (−2)n 2. Si une suite n'est pas minorée alors elle tend vers −∞ Faux : (−2)n 3. Si une suite est strictement croissante alors elle tend vers +∞ Faux : 1 − 1 n , ou −e−n.
Une suite croissante est minorée par son premier terme, et une suite décroissante est majorée par son premier terme (sera démontré par récurrence plus tard).
Sens de variation, convergence et majoration/minoration
Si une suite est croissante et converge vers L, alors elle est majorée par L. Si une suite est décroissante et converge vers L, alors elle est minorée par L.
Si la suite u est majorée par M et convergente vers le nombre L, alors L ≤ M. Si la suite u est minorée par m et convergente vers le nombre L, alors L ≥ m. Si la suite u est croissante et non majorée, alors . Si la suite u est décroissante et non minorée, alors .
Théorème : Soit I un intervalle de R et f:I→R f : I → R dérivable. Alors : f est croissante sur I si et seulement si, pour tout x∈I x ∈ I , f′(x)≥0 f ′ ( x ) ≥ 0 ; f est strictement croissante sur I si et seulement si f′≥0 f ′ ≥ 0 et si f′ n'est identiquement nulle sur aucun intervalle [a,b]⊂I [ a , b ] ⊂ I avec a<b .
Partie 1 : Fonctions croissantes et fonctions décroissantes
Lorsqu'on se promène sur la courbe en allant de la gauche vers la droite : Sur l'intervalle [0 ; 2,5], on monte, on dit que la fonction est croissante. Sur l'intervalle [2,5 ; 5], on descend, on dit que la fonction est décroissante.
La notion mathématique de limite a été introduite en 1735 par le mathématicien anglais Benjamin Robins comme ce vers quoi tendent, sans jamais l'atteindre, certains rapports de quantités variables.
De la même manière que pour une suite, on peut définir la limite d'une fonction en l'infini. On dit que f tend vers l en +∞ si, pour x assez grand, f(x) est aussi proche de l que l'on veut.
C'est une forme indéterminée comme "infini/infini" ou "infini - infini" ou "0/0" ou encore "1^(infini)".