Dans un triangle rectangle, le cosinus d'un angle, noté « cos », est égal au rapport (quotient) de la longueur du côté adjacent à cet angle sur la longueur de l'hypoténuse.
cos 12° 0,978 ; cos 20° 0,94 ; cos 45° 0,707 ; cos 60° = 0,5 cos 90° = 0 ; cos 0° = 1.
On appelle cosinus de l'angle ABC , le quotient de la longueur du côté adjacent à l'angle ABC par la longueur de l'hypoténuse.
sin (angle) = (côté opposé à l'angle) divisé par (hypoténuse). cos (angle) = (côté adjacent à l'angle) divisé par (hypoténuse). tan(angle) = (côté opposé à l'angle) divisé par (côté adjacent à l'angle).
Formules fondamentales :
tg x = sin x / cos x. cotg x = cos x / sin x. 1 + tg² x = 1 / cos² x. 1 + cotg² x = 1 / sin² x.
La formule du cosinus d'un angle s'applique dans un triangle rectangle. Elle correspond au rapport entre la longueur du côté adjacent à l'angle (longueur collée à l'angle) et la longueur de l'hypoténuse (le plus grand côté du triangle rectangle).
La valeur exacte de cos(45°) cos ( 45 ° ) est √22 .
Pour trouver la mesure de l'angle aigu à partir d'un cosinus, appuyez sur la touche 2nd (ou shift) puis COS (qui devient Cos-1) (ou Acs, ou Arccos), entrez la valeur du cosinus, puis appuyez sur enter. Ceci est utilisable seulement avec la calculatrice scientifique. Voilà, c'est tout.
Généralement, on utilise la loi des cosinus dans deux situations : lorsqu'on connait les mesures de deux côtés et de l'angle qu'ils forment dans le triangle ce qui permet de trouver la mesure du troisième côté (comme dans le triangle de gauche ci-dessous);
Dans un triangle rectangle, on appelle le cosinus d'un angle aigu le quotient de la mesure de la longueur du côté adjacent à cet angle par celle de l'hypoténuse du triangle.
Trigonométrie Exemples. La valeur exacte de cos(30°) cos ( 30 ° ) est √32 .
Calcul du sinus
On veut obtenir une valeur approchée du sinus d'un angle de 50°. On met la calculatrice en mode degré ; on tape sin puis 50. L'affichage est : 0,7660444431. Le résultat est : sin 50° = 0,766 (au millième près).
Trigonométrie Exemples. La valeur exacte de sin(30°) sin ( 30 ° ) est 12 .
Trigonométrie Exemples. Appliquez l'angle de référence en trouvant l'angle avec des valeurs trigonométriques équivalentes dans le premier quadrant. Rendez l'expression négative car la tangente est négative dans le quatrième quadrant. La valeur exacte de tan(45) est 1 .
La valeur exacte de sin(90°) sin ( 90 ° ) est 1 .
cos(x)=0 si et seulement s'il existe k∈Z tel que x=π2+kπ.
Comment effectuer le calcul de l'angle ? L'angle de la pente (mesuré en degrés) sert à déterminer une inclinaison. Pour déterminer la valeur d'un angle, il faut prendre l'arc-tangente de la hauteur divisée par la largeur, le tout multiplié par 180/π pour obtenir la valeur en degré.
On retrouve la valeur de cos 60o = 1/2.
La valeur exacte de sin(60) est √32 . Le résultat peut être affiché en différentes formes.
La sécante est l'inverse du cosinus. La cotangente est l'inverse de la tangente.
Quant au cosinus, c'est tout simplement le sinus du complémentaire (de l'angle) ; « co- » vient du latin cum, qui signifie « avec ». La tangente, elle, vient de ce qu'elle mesure une portion d'une tangente au cercle trigonométrique ; et la cotangente est aussi la tangente du complémentaire.