Formulation équivalente : si le triangle ABC est rectangle en A alors BC2 = AC2 + AB2. Ainsi, dans un triangle rectangle, le carré de l'hypoténuse est égal à la somme des carrés des côtés de l'angle droit.
Le théorème de Pythagore s'énonce ainsi : si un triangle est rectangle, alors le carré de la longueur de son hypoténuse -- le côté opposé à son angle droit -- est égal à la somme des carrés des longueurs des deux côtés formant l'angle droit.
Le théorème de Pythagore montre qu'il existe pour les triangles rectangles une relation entre les longueurs des côtés, en particulier le plus grand : l'hypoténuse. Il permet de trouver la longueur du troisième côté d'un triangle rectangle dont deux côtés sont de dimension connue.
Ainsi, AB/AC = AE/AD, donc d'après le théorème de Thalès, (BE) et (CD) sont parallèles. En fait, si les points sont au milieu des segments, les fractions que l'on va calculer seront toujours égales à 1/2 (ou 2 si on prend la fraction inverse), et ce quelle que soit les longueurs de chaque côté.
Théorème de Pythagore (P) Si un triangle est rectangle alors le carré de la longueur de l'hypoténuse est égal à la somme des carrés des longueurs des deux autres côtés.
La réciproque du théorème Pythagore dit que « si un triangle est rectangle, alors le carré de la plus grande longueur (l'hypoténuse) est égale à la somme des carrés des longueurs des deux autres côtés ». La réciproque de Pythagore permet donc de montrer si un triangle est rectangle.
Utilisation du théorème de Pythagore pour calculer la longueur d'un côté d'un triangle rectangle : Dans un triangle rectangle, le carré de l'hypoténuse est égal à la somme des carrés des deux autres côtés. Si ABC est un triangle rectangle en A, alors BC² =AB² + AC² .
Pour calculer la longueur du rectangle à partir du périmètre, on recherche d'abord le demi-périmètre puis on soustrait la largeur. L = Dp-l.
En utilisant le théorème de Pythagore : Si un triangle est rectangle, alors le carré de l'hypoténuse est égal à la somme des carrés des côtés de l'angle droit. Si ABC est un triangle rectangle en A, alors BC² = AB² + AC².
La ligne jaune (appelée diagonale) se calcule par le théorème de Pythagore et est égale à la racine carrée de (a²+b²).
Par exemple : On a : 62 = 36, le nombre dont le carré est égal à 36 est 6. On note alors : √36 = 6.
Si c désigne la longueur d'un côté d'un triangle et h la hauteur relative à ce côté, l'aire de ce triangle est égale à (c × h) ÷ 2.
Énoncé de la Réciproque de Pythagore:
Si, dans un triangle, le carré de la longueur du plus grand côté est égal à la somme des carrés des longueurs des deux autres côtés alors ce triangle est rectangle.
Comment calculer la longueur d'une diagonale d'un rectangle
Pour la diagonale [AC], étudier un des triangles rectangles ABC ou ADC, et y calculer AC avec le théorème de Pythagore : AC2 = AB2 + BC2 = L2 + l2 pour un rectangle de longueur AB = L et de largeur BC = l.
Le théorème de Pythagore est un des théorèmes les plus utilisés en géométrie. Il indique que dans le cas d'un triangle dont l'un des angles est droit, le carré du côté opposé à l'angle droit est équivalent à la somme du carré de ses deux autres côtés.
Pour trouver le périmètre d'une figure, il faut mesurer la longueur de son contour. Ex. : un carré de 3 cm de côté a pour périmètre 4 × 3 = 12 cm (3 + 3 + 3 + 3). La formule pour calculer le périmètre d'un rectangle est (L + l) × 2, « longueur plus largeur fois 2 ».
Le périmètre est le tour de la figure. Il faut donc additionner les longueurs des trois côtés pour obtenir le périmètre.
Calculer la longueur d'un côté avec le théorème de Pythagore
Si un triangle est rectangle, alors le carré de la longueur de l'hypoténuse est égal à la somme des carrés des longueurs des deux côtés de l'angle droit.
La formule du cosinus d'un angle s'applique dans un triangle rectangle. Elle correspond au rapport entre la longueur du côté adjacent à l'angle (longueur collée à l'angle) et la longueur de l'hypoténuse (le plus grand côté du triangle rectangle).
Cas n° 1 : Si, dans un triangle, le carré de la longueur du côté le plus long est égal à la somme des carrés des longueurs des 2 autres côtés, alors ce triangle est rectangle. AUTRE FORMULATION : Si un triangle ABC est tel que AB² + AC² = BC², alors il est rectangle en A.
D'après le théorème de Pythagore, si, dans un triangle, le carré du côté le plus long est égal à la somme des carrés des deux autres côtés, alors c'est un triangle rectangle. Si BC2 = AC2 + AB2 alors le triangle ABC est rectangle en A.
Avec la reciproque de Thalès on peut savoir si les deux droites sont parallèles. Mais seulement si les cotes des triangles sont proportinnels deux a deux. Pythagore ce n'est qu'avec un triangle rectangle, il sert a connaitre la mesure d'un côté.