Il existe aussi des techniques de simplification des racines carrées. Pour simplifier une racine carrée, on recherche des facteurs carrés parmi les diviseurs du nombre sous la racine. Par exemple, la racine carrée de 48 peut être simplifiée en séparant les facteurs carrés : √(16 × 3) = √16 × √3 = 4√3.
Simplification d'une racine carrée
Si nous avons une fraction contenant une racine, la fraction doit être réécrite pour n'avoir aucune racine dans le dénominateur. La forme simplifiée de s'obtient en multipliant le numérateur et dénominateur par . Cela nous donne a a × a = a a . La forme simplifiée de est .
Ensuite, vous utilisez une formule simple : R = A + (X-A²)/2/A, ou R = B - (X-B²)/2/B, selon la proximité du carré. Exemple 1 : racine de 11. Je prends A² = 9, 11 étant plus proche de 9 que de 16, A = 3. R(11) = A + (X-A²)/2/A = 3 + (11–9)/2/3 = 3 + 1/3 = 3,333 , pour une vraie valeur de 3,317.
= √(2 x 2 x 2 x 11). Il y a plusieurs 2 et comme c'est un nombre premier, on ne peut décomposer davantage. On va pouvoir sortir une paire de 2 de dessous la racine et mettre 2 devant la racine. Réduite à sa plus simple expression, la racine donne : 2 √(2 x 11) ou encore 2 √(2) √(11).
√75 = √25 × 3 = √25 × √3=5√3. Remarque. Pour simplifier la racine carrée d'un nombre il suffit donc d'écrire ce nombre sous la forme d'un produit impliquant des carrés parfaits (4 ou 25 ci-dessus).
Réécrivez 18 comme 32⋅2 3 2 ⋅ 2 . Factorisez 9 9 à partir de 18 18 . Réécrivez 9 9 comme 32 3 2 . Extrayez les termes de sous le radical.
Pour trouver la racine carrée d'un nombre, il faut trouver quel nombre multiplié par lui-même nous donne le nombre contenu dans la racine carrée. Si tu veux trouver la racine carrée de 25, tu dois trouver quel nombre multiplié par lui-même est égal à 25.
Simplifier la racine carrée du discriminant
Donc 32 = 16 × 2 = 16 × 2 = 4 2 \sqrt{32}=\sqrt{16\times 2}=\sqrt{16}\times\sqrt{2}=4\sqrt{2} 32 =16×2 =16 ×2 =42 .
Réécrivez 45 comme 32⋅5 3 2 ⋅ 5 . Factorisez 9 9 à partir de 45 45 . Réécrivez 9 9 comme 32 3 2 . Extrayez les termes de sous le radical.
La racine carrée de 25 est 5, car 5 x 5 = 25. La racine carrée de 36 est 6, car 6 x 6 = 36.
Détermine la règle de la fonction racine carrée ci-dessous. La règle de la fonction racine carrée est f(x)=2√−(x+1)−3.
Réécrivez 8 comme 22⋅2 2 2 ⋅ 2 . Factorisez 4 4 à partir de 8 8 . Réécrivez 4 4 comme 22 2 2 . Extrayez les termes de sous le radical.
Puisqu'on sait que 20 = 4×5 et que √(4×5) = √4×√5, on préférera "simplifier" en écrivant 2√5 à la place de √20.
Réécrivez 288 comme 122⋅2 12 2 ⋅ 2 . Factorisez 144 144 à partir de 288 288 . Réécrivez 144 144 comme 122 12 2 . Extrayez les termes de sous le radical.
Algèbre Exemples
Factorisez 16 16 à partir de 80 80 . Réécrivez 16 16 comme 42 4 2 . Extrayez les termes de sous le radical. Le résultat peut être affiché en différentes formes.
Réécrivez 147 comme 72⋅3 7 2 ⋅ 3 . Factorisez 49 49 à partir de 147 147 . Réécrivez 49 49 comme 72 7 2 . Extrayez les termes de sous le radical.
Réécrivez 500 comme 102⋅5 10 2 ⋅ 5 . Factorisez 100 100 à partir de 500 500 . Réécrivez 100 100 comme 102 10 2 . Extrayez les termes de sous le radical.
Réécrivez 150 comme 52⋅6 5 2 ⋅ 6 . Factorisez 25 25 à partir de 150 150 . Réécrivez 25 25 comme 52 5 2 . Extrayez les termes de sous le radical.
En mathématiques, la racine carrée de cinq, notée √5 ou 51/2, est un nombre réel remarquable ; c'est l'unique réel positif dont le carré est égal à 5. Il vaut approximativement 2,236. C'est un irrationnel quadratique et un entier quadratique (entier algébrique de degré 2).
Une obtention de décimales par la méthode de Newton a été illustrée en 1922, concluant que √7 vaut 2,646 « au millième près ».
On en tire les valeurs suivantes de √2 : √2 = 1/5 × [7 ; 14, 14, 14…], √2 = 1/29 × [41 ; 82, 82, 82…].
Il est exact que √200 = 5√8 !
Algèbre Exemples
Réécrivez 169 comme 132 . Extrayez les termes de sous le radical, en supposant qu'il s'agit de nombres réels positifs. Multipliez −1 par 13 .
√72 = √(9 x 8) = √(3 x 3 x 8) = 3√8. Essayez toujours de voir si 9 ne serait pas un des facteurs.