La courbe représentative d'une fonction f est l'ensemble des points M(x;y) tels que f(x)=y et x∈Df. On peut en tracer une allure si l'on connaît une expression de la fonction. On considère la fonction f définie, pour tout réel x, par f\left(x\right) = 2x^2-x+1.
La courbe représentative de la fonction f est l'ensemble des points de coordonnées (x ; y), où y = f(x) et où x prend toutes les valeurs de l'ensemble ?. On dit que la courbe de f a pour équation y = f(x). Un point M de coordonnées (xM ; yM) appartient à la courbe représentant la fonction f si yM = f(xM).
La fonction f est constante : sa représentation graphique est une droite d'équation : y = b. Cette droite est parallèle à l'axe des abscisses. On a f(x) = ax. La fonction f est linéaire : sa représentation graphique est une droite d'équation : y = ax, qui passe par l'origine du repère.
Il est très simple de tracer une droite dont on connaît l'équation réduite. Par exemple, si la droite a pour équation y=2x+3, alors l'ordonnée à l'origine est 3 et la droite passe par le point de coordonnées (0 ; 3). Son coefficient directeur est 2, donc si x augmente de 1, alors y augmente de 2.
Fonction linéaire
La représentation d'une fonction linéaire est une droite passant par l'origine du repère. Il suffit donc de déterminer un autre point pour pouvoir tracer la droite. Pour cela on calcule l'image d'un nombre non nul par la fonction.
On appelle fonction linéaire toute fonction f dont l'expression peut s'écrire sous la forme f (x) = a x où a est une constante. * On considère deux grandeurs x et y telles que : y soit proportionnelle à x. En conséquence, il existe un nombre a tel que : y = a x.
Notamment: parabole, hyperbole, ellipse, logarithme, exponentielle.
1) Sens de variation :
a) Fonction croissante sur un intervalle : Une fonction f est dite croissante sur un intervalle I si , lorsque les valeurs de la variable x augmentent alors les valeurs des images f(x) augmentent aussi. Pour tout x1 et x2 de l'intervalle I , si x1 x2 alors f(x1) f(x2).
Un graphique en courbes est essentiellement une connection entre différents points de données. Un graphique en courbes est déterminé par deux axes :l'axe des abscisses (x) représente souvent des périodes de temps etl'axe des ordonnées (y) affiche une valeur quantitative. Voir plus d'exemples de graphiques en courbes.
Le tracé d'un graphique se fait à partir d'un relevé de couples de données (par exemple, le temps et la température). L'évolution est ensuite reportée sur une feuille à deux axes (abscisses et ordonnées). Les points sont placés sous forme de croix et reliés à la main.
Résoudre graphiquement l'inéquation f(x) < k sur [a ; b], c'est trouver les abscisses de tous les points de la courbe de f dont l'ordonnée est strictement inférieure à k. On trace la droite formée de tous les points d'ordonnée k. On cherche tous les points de la courbe qui sont en dessous de cette droite.
D . Dans un repère (en principe orthogonal), on appelle courbe représentative de f l'ensemble des points du plan dont les coordonnées (x;y) vérifient la relation y=f(x). y = f ( x ) .
Dans un repère, la courbe représentative C (ou représentation graphique) d'une fonction f est l'ensemble des points de coordonnées ( x ; f ( x ) ) (x\ ;\ f(x)) (x ; f(x)) où x appartient à l'ensemble de définition D.
Dans l'alphabet, on a dans l'ordre : x, y et z. y est après x, c'est l'image de x. x est avant y, c'est l'antécédent de y.
On dit qu'une fonction f est croissante ssi pour x et y dans le DD de f , si on a x ≤ y, on a aussi f (x) ≤ f (y). En langage plus formel, ça donne ∀x,y ∈ DD(f ),x ≤ y ⇒ f (x) ≤ f (y).
La courbe en cloche ou courbe de Gauss est l'une des courbes mathématiques les plus célèbres. On la voit apparaître dans un grand nombre de situations concrètes — en statistiques et en probabilités — et on lui fait souvent dire tout et n'importe quoi.
On dira qu'une fonction f(x) est positive sur un intervalle donné en x si, sur cet intervalle, les valeurs de f(x) sont supérieures ou égales à 0 (positives). On dira qu'une fonction f(x) est négative sur un intervalle donné en x si, sur cet intervalle, les valeurs de f(x) sont inférieures ou égales à 0 (négatives).
Elle est représentative d'une fonction à partir du moment où pour tout x tu ne vas avoir qu'une seule intersection entre la droite parallèle à l'axe des ordonnées qui passe par ce x et la courbe que tu regardes.
On commence par définir la droite sécante. entre deux points M et N de la courbe : c'est la droite qui les relie. La tangente en M peut alors être définie comme la position limite de la sécante lorsque le point N tend vers M.
Si votre regard monte, elle est CROISSANTE. A l'inverse, si votre regard descend, elle est DECROISSANTE. Enfin, si les deux extrémités sont identiques, elle est STABLE. p ou ne font que descendre ou n'évoluent pas, la courbe est REGULIERE ou CONTINUE.
f est une fonction linéaire donc son expression algébrique est f(x) = ax où a est le coefficient de cette fonction linéaire.
La représentation graphique d'une fonction linéaire est une droite passant par l'origine du repère. La représentation graphique d'une fonction affine est une droite passant par le point de coordonnées (0 ; b). Vocabulaire : a est appelé le coefficient directeur de la droite.
La représentation graphique d'une fonction linéaire f : x → ax est une droite passant par l'origine et d'équation y = ax.