Si la fonction valeur absolue est ouverte vers le bas (lorsque a est négatif), l'ouverture de sa réciproque est vers la droite. Dans ce cas, ima(f)=]−∞,k]=dom(f−1).
1 t dt. L'application réciproque de ln est la fonction exponentielle c'est-à-dire ∀x ∈ R, ∀y ∈]0, +∞[, exp(x) = y ⇐⇒ x = ln y.
Afin de trouver la règle de la fonction réciproque de f, il suffit de poser x=f(y) et d'isoler la variable y. Déterminons si la fonction f(x)=(x−1)3+2 est injective.
La réciproque du théorème de Pythagore
Si dans un triangle ABC, on a BC^2=AB^2+AC^2, alors le triangle ABC est rectangle en A. D'une part, BC^2=5^2=25. D'autre part, AB^2+AC^2=3^2+4^2=9+16=25.
Si f(a)=b, alors f ⁻¹(b)=a, autrement dit si a est l'antécédent de b par la fonction f, alors a est l'image de b par la fonction réciproque de f.
La réciproque d'une fonction f s'obtient en intervertissant les valeurs de x et de y puis en isolant y. y .
La relation réciproque d'une fonction f de X dans Y est la relation notée f-1, de Y dans X, telle que, pour tous les éléments du domaine de f, si y = f(x), alors x = f -1(y).
Si les points O, A, F, d'autre part, et O, B, G, d'autre part, sont alignés et dans le même ordre OA/OF = OB/OG. Alors les droites (AB) et (FG) sont parallèles.
La réciproque du théorème Pythagore dit que « si un triangle est rectangle, alors le carré de la plus grande longueur (l'hypoténuse) est égale à la somme des carrés des longueurs des deux autres côtés ». La réciproque de Pythagore permet donc de montrer si un triangle est rectangle.
Théorème de Thalès (appliqué au triangle)
ABC est un triangle. M se trouve sur le segment [AB] et N sur le segment [AC]. D'après le théorème de Thalès, si les droites (BC) et (MN) sont parallèles, alors on a l'égalité : \frac{AM}{AB} = \frac{AN}{AC} =\frac{MN}{BC}.
Une fonction admet une réciproque si et seulement si sa courbe représentative a un seul point d'intersection avec une parallèle à l'axe des abscisses.
Pour étudier la dérivée de la réciproque f − 1 f^{-1} f−1 au point y 0 = f ( x 0 ) y_0=f(x_0) y0=f(x0), on considère le quotient est f − 1 ( y ) − f − 1 ( y 0 ) y − y 0 . \frac{f^{-1}(y)-f^{-1}(y_0)}{y-y_0}\,. y−y0f−1(y)−f−1(y0).
La réciproque du théorème de Thalès sert à montrer que deux droites sont parallèles.
Le taux d'évolution réciproque d'une valeur vers une valeur est tel que . est exprimé en pourcentage. Il est positif s'il représente une augmentation, négatif s'il représente une diminution. Soit le taux d'évolution d'une valeur vers une valeur .
RÉCIPROQUE, adj. et subst. (Ce) qui s'exerce entre deux (groupes de) personnes, (d') objets ou (d') éléments quelconques, l'action exercée et l'action reçue étant équivalentes.
Le théorème de Pythagore établit une relation entre les longueurs des côtés d'un triangle rectangle, tandis que sa réciproque permet de déterminer si un triangle est rectangle en vérifiant cette relation.
v Théorème de Pythagore : Si un triangle est rectangle, alors le carré de la longueur de l'hypoténuse est égal à la somme des carrés des longueurs des deux autres côtés. Soit le triangle ABC rectangle en A ci-contre. D'après le théorème de Pythagore, on a : BC2 = AB2 + AC2.
Théorème de Pythagore :
Si un triangle est rectangle , alors le carré de la longueur de son hypoténuse est égal à la somme des carrés des longueurs des deux autres côtés. Exemple 1 : Soit le triangle ABC rectangle en A ([BC] est donc l'hypoténuse), alors BC²=AC²+BA².
Le théorème de Thalès est très utile lorsqu'on recherche une ou des mesures manquantes dans une figure formée par des sécantes qui croisent des droites parallèles. Remarque : Le théorème de Thalès s'applique peu importe si les sécantes (EC et BD) se croisent à l'extérieur ou à l'intérieur des parallèles (ED et BC).
En pratique, le théorème de Thalès permet de calculer des rapports de longueur et de mettre en évidence des relations de proportionnalité en présence de parallélisme.
D'après le théorème des fonctions réciproques, la fonction est dérivable en tout point image d'un tel que. Mais on a : f ′ ( x ) = 0 ⇔ x = 0 , donc est dérivable en tout point autre que. Donc est dérivable sur. Représentation graphique de et de dans un repère orthonormé.
d'une fonction f , notée f C , on calcule ( ) f a et on compare le résultat à b . Exemple : Le point ( ) 1 ; 4 A appartient à la courbe représentative de f définie par ( ) ² 2 3 =- + + f x x x , car (1) 1² 2 1 3 4 =- + × + = f .
La forme canonique est une forme d'écriture paramétrique de l'équation d'une fonction. On dit que la forme canonique d'une fonction est porteuse de sens puisqu'elle donne de l'information sur l'allure de son graphique. On l'appelle aussi forme transformée.
Important! Pour trouver la règle d'une fonction rationnelle, il faut toujours utiliser l'équation sous la forme canonique simplifiée, c'est-à-dire f(x)=ax−h+k.
Exemple : Leur salut était réciproque. Relatif aux verbes pronominaux qui expriment une action que réalisent les sujets les uns sur les autres.