Lorsque l'équation de la droite est présentée sous la forme y = ax + b, l'ordonnée à l'
Pour trouver son abscisse, on trace une parallèle à l'axe des ordonnées ; on lit alors l'abscisse du point à l' intersection avec l'axe horizontal. Pour trouver son ordonnée, on trace une parallèle à l'axe des abscisses ; on lit alors l'ordonnée du point à l' intersection avec l'axe vertical.
Propriété : Chaque point d'une demi-droite graduée est repéré par un nombre. Définition : Le nombre associé à un point sur une demi-droite graduée est l'abscisse de ce point. L'origine O de la demi-droite a pour abscisse 0. A est le point d'abscisse 1.
Compter les unités de graduation
L'abscisse d'un point correspond au nombre d'unités de graduation entre l'origine (O) et le point. Tu peux donc déterminer l'abscisse d'un point en comptant les unités de graduation à partir de l'origine. Il y a 2 unités de graduation entre l'origine et le point C.
Détermination de l'ordonnée à l'origine : Il suffit de lire l'ordonnée du point d'intersection de la droite avec l'axe des ordonnées. L'équation est de la forme y = px + d. L'ordonnée à l'origine est 1.
L'abscisse à l'origine est la valeur de l'abscisse (x) lorsque l'ordonnée (y) vaut zéro. Autrement dit, c'est l'endroit sur le graphique où la droite croise l'axe des abscisses. L'ordonnée à l'origine est la valeur de l'ordonnée (y) lorsque l'abscisse (x) vaut zéro.
Ainsi : La pente de la l'équation se calcule avec la formule m=−AB. L'ordonnée à l'origine se calcule avec la formule b=−CB. L'abscisse à l'origine se calcule avec la formule a=−CA.
Abscisse. Sur une droite graduée, l'abscisse d'un point est le nombre qui permet de repérer la position de ce point sur la droite. Dans un repère du plan, l'abscisse d'un point est l'un des deux nombres qui permet de repérer la position de ce point dans le repère.
Coordonnée horizontale permettant de définir la position horizontale d'un point dans un plan ou sur une droite orientée. L'axe des abscisses et l'axe des ordonnées permettent de placer un point sur un repère. Exemple : Abscisse à l'origine, abscisse curviligne.
Pour déterminer l'abscisse du point d'intersection avec l'axe des abscisses, il faut trouver la valeur de x pour laquelle y = 0 y=0 y=0 . Pour déterminer l'ordonnée du point d'intersection avec l'axe des ordonnées, il faut trouver la valeur de y pour laquelle x = 0 x=0 x=0 .
L'abscisse du point B est égale à 2. L'abscisse du point C est égale à 0.
On appelle image de x par f le nombre f(x). On appelle antécédent de y le nombre x telle que f(x) = y.
Pour calculer la distance entre deux points sur une droite graduée, on effectue la différence entre la plus grande abscisse et la plus petite abscisse. Exemple : Calcule la distance entre le point G d'abscisse 4 et le point H d'abscisse − 7. 4 − 7 On compare les abscisses pour trouver la plus grande.
L'ordonnée à l'origine ou la valeur initiale (b)
Dans un graphique, l'ordonnée à l'origine correspond au point d'intersection entre la droite et l'axe des ordonnées (l'axe y ).
Lecture graphique d'images et d'antécédents. Méthode L'axe des abscisses est l'axe horizontal, l'axe des ordonnées est l'axe vertical. On lit les antécédents sur l'axe des abscisses et les images sur l'axe des ordonnées.
L'équation y=mx+p s'appelle équation réduite de la droite d. Le coefficient directeur d'une droite (AB) non parallèle à l'axe des ordonnées est égal à xB−xAyB−yA.
Une abscisse, toujours au féminin.
On utilisera un repère constitué des trois axes Ox, Oy et Oz, qui délimitent trois plans. Dans ce système de coordonnées cartésien, un point de l'espace sera noté ( x ; y ; z ).
L'axe des x s'appelle l'abscisse du point, l'axe des y s'appelle l'ordonnée de ce point et l'axe des z s'appelle la côte de ce point.
Définition : Sur une demi-droite graduée, un point est repéré par un nombre appelé son abscisse. 3) Multiplication par 10 ; 100 ; 1000 …
On lit la valeur de l'abscisse du point M à l'intersection entre l'axe des abscisses et la parallèle à l'axe des ordonnées. On lit la valeur de l'ordonnée du point M à l'intersection entre l'axe des ordonnées et la parallèle à l'axe des abscisses. On a donc M(2 ; 3).
La pente a pour valeur 0. Lorsque x augmente de 1, y ni augmente, ni diminue. L'ordonnée à l'origine a pour valeur -4. Cette relation peut souvent être représentée par l'équation y = b 0 + b 1x, où b 0 désigne l'ordonnée à l'origine et b 1 la pente.
Déterminez la pente avec deux points.
Utilisez l'un des points de l'équation y = mx + b. Insérez les coordonnées de l'un des points dans l'équation où m est la pente. Ensuite, résolvez pour b, qui est l'intersection de l'axe des ordonnées (Y) de la ligne qui relie les deux points.
La formule pour calculer la pente m d'une droite qui passe par les points P(x1, y1) et Q(x2, y2) est : m=∆y∆x = y2 – y1x2 – x1, où ∆y représente la variation des ordonnées et ∆x représente la variation des abscisses.