Une équation de droite se présente sous la forme : y = ax + b avec a le coefficient directeur et b l'ordonnée à l'origine. Ici b = 0, car la droite coupe l'axe des ordonnées au point 0. Pour déterminer a, il suffit de se placer sur le point correspondant à l'ordonnée à l'origine (b).
Fiches méthodes. Si on a une fonction et qu'on cherche les coordonnées d'un point de sa courbe représentative : on choisit une valeur de x et on calcule y = f(x) en remplaçant x dans l'expression f(x) donnée. On obtient ainsi les coordonnées ( x ; y = f(x) ) d'un point de la représentation graphique de la fonction f.
Propriété Le vecteur (-b\: ; a) est un vecteur directeur de la droite d'équation ax + by + c = 0. Logique Réciproquement, si le vecteur (-b \:; a) est un vecteur directeur de d, alors une équation cartésienne de d est ax + by + c = 0 (avec c à déterminer).
Pour déterminer le point d'intersection des droites (D1) et (D2), on résout l'équation ax+b=a'x+b' et on détermine x. On déduit de x, la valeur de y.
Si on connaît les coordonnées (a ; b) et (c ; d) de deux points d'une droite, on peut calculer son coefficient directeur m. On peut ensuite écrire immédiatement qu'une équation de cette droite est y - b = m(x - a).
Trouver l'équation d'une droite
Exemple : Déterminer l'équation de la droite (AB) qui pasees par les points A(-2 ; 9) et B(1 ; 3). Méthode : Les points A et B n'ont pas la même abscisse. * L'équation de la droite est de la forme y = ax + b. (Il faut déterminer a et b).
Calcul vectoriel - Points clés
Pour calculer la norme d'un vecteur, il faut utiliser la formule ‖ v → ‖ = v x 2 + v y 2 . Pour calculer les coordonnées d'un vecteur, nous utilisons la formule A B → = ( x B − x A y B − y A ) .
L'équation cartésienne d'une droite est de la forme ax + by + c = 0 avec a, b et c ∈ℝ et au moins l'un des nombres a et b non nul.
coordonnées d'un point
Dans un repère du plan, on a besoin de deux nombres pour indiquer la position d'un point : ce sont ses coordonnées. La première coordonnée, l' abscisse, se lit sur l'axe horizontal (l'axe des abscisses) ; la seconde, l' ordonnée, se lit sur l'axe vertical (l'axe des ordonnées).
Ouvrez Google Maps sur votre ordinateur. Effectuez un clic droit sur le lieu ou la zone qui vous intéresse sur la carte. Vous trouverez vos coordonnées (latitude et longitude) au format décimal en haut de la fenêtre pop-up qui s'affiche.
2- Coordonnées du vecteur défini par deux points
Dans le plan muni du repère (O,I,J) on considère les points A(xA, yA) et B(xB, yB). Les coodonnées du vecteur AB sont (xB – xA, yB – yA).
Pour trouver son abscisse, on trace une parallèle à l'axe des ordonnées ; on lit alors l'abscisse du point à l' intersection avec l'axe horizontal. Pour trouver son ordonnée, on trace une parallèle à l'axe des abscisses ; on lit alors l'ordonnée du point à l' intersection avec l'axe vertical.
Définition de l'abscisse d'un point
Sur un axe gradué, on repère chaque point grâce à un nombre appelé son abscisse. Exemple : Sur l'axe gradué précédent, L'abscisse de A est 1, l'abscisse de H est 4, l'abscisse de T est 1,5 et l'abscisse de S est 6,25.
On écrit « les coordonnées » : attention le mot « coordonné » peut à la fois être un nom (substantif féminin), un adjectif ou le participe passé du verbe « coordonner ». Quand on écrit « les coordonnées », il s'agit bien du nom, qui s'écrit toujours avec un -e : une coordonnée, des coordonnées.
Pour repérer un nombre décimal sur une droite graduée, il faut additionner sa partie entière à sa partie décimale. Pour placer un nombre décimal sur une droite graduée, on repère sa partie entière puis on ajoute sa partie décimale.
Une équation de droite se présente sous la forme : y = ax + b avec a le coefficient directeur et b l'ordonnée à l'origine. Ici b = 2, car la droite coupe l'axe des ordonnées au point 2. Pour déterminer a, il suffit de se placer sur le point correspondant à l'ordonnée à l'origine (b).
L'image de chaque point de la droite est donc située à l'extrémité de chaque vecteur. E' et F' sont les images des points E et F de la droite (d) par la translation qui transforme X en Y. L'image d'un point se nomme généralement en utilisant la même lettre, à laquelle on ajoute une apostrophe: E' est l'image de E.
En utilisant la formule. Une équation cartésienne de droite est de la forme ax+by+c=0. On peut déterminer une équation cartésienne de la droite \left(d\right) lorsque l'on connaît un point de la droite et un vecteur directeur de la droite.
Dans un plan cartésien, on peut trouver les coordonnées du point d'intersection de deux courbes (comme par exemple deux droites) en résolvant le système d'équations. Soit les droites dont les équations sont y = x – 4 et y = –2x + 5, alors : x – 4 = –2x + 5. On représente ces droites dans un plan cartésien.
Tout vecteur peut être exprimé sous la forme 𝑥 ⃑ 𝑖 + 𝑦 ⃑ 𝑗 + 𝑧 ⃑ 𝑘 . On peut, alternativement, l'écrire sous forme de composantes comme suit : ( 𝑥 , 𝑦 , 𝑧 ) et 𝑥 𝑦 𝑧 .
On appelle vecteur directeur de D tout vecteur non nul u ! qui possède la même direction que la droite D. ( )≠ 0;0 ( ). Cette équation est appelée équation cartésienne de la droite D.
Le coefficient directeur a représente la « pente » de la droite qui représente une fonction linéaire : si a > 0 a>0 a>0 la droite « monte » ; si a = 0 a=0 a=0 la fonction est constante, la droite est horizontale ; si a < 0 a<0 a<0 la droite « descend ».
Droites parallèles
Propriété 1 : Les droites d'équation y = m x + p et y = m' x + p' sont parallèles équivaut à : m = m' . Propriété 2 : Les droites d'équation a x + b y + c = 0 et a' x + b' y + c' = 0 sont parallèles équivaut à : ab' - ba' = 0.
L'abscisse à l'origine du graphique d'une fonction f représentée dans un plan cartésien est le nom donné à l'abscisse de chacun des points de rencontre du graphique de f avec l'axe des abscisses, soit le ou les points du graphique pour lesquels f(x)=0.
Points alignés
On dit que trois points ou plus sont alignés s'ils sont sur une même droite. A, B et C sont alignés car A, B et C sont sur la même droite (d).