Utilisez l'un des points de l'équation y = mx + b. Insérez les coordonnées de l'un des points dans l'équation où m est la pente. Ensuite, résolvez pour b, qui est l'intersection de l'axe des ordonnées (Y) de la ligne qui relie les deux points.
coordonnées d'un point
Dans un repère du plan, on a besoin de deux nombres pour indiquer la position d'un point : ce sont ses coordonnées. La première coordonnée, l' abscisse, se lit sur l'axe horizontal (l'axe des abscisses) ; la seconde, l' ordonnée, se lit sur l'axe vertical (l'axe des ordonnées).
Détermination de l'ordonnée à l'origine : Il suffit de lire l'ordonnée du point d'intersection de la droite avec l'axe des ordonnées. L'équation est de la forme y = px + d. L'ordonnée à l'origine est 1.
L'ordonnée à l'origine ou la valeur initiale (b)
Dans un graphique, l'ordonnée à l'origine correspond au point d'intersection entre la droite et l'axe des ordonnées (l'axe y ).
* L'ordonnée à l'origine d'une fonction affine est l'image de 0 par cette fonction, soit : b = f (0) . Démonstration : évidente en calculant l'image de 0. f x = 2 x − 3 .
Déterminez la pente avec deux points.
Utilisez l'un des points de l'équation y = mx + b. Insérez les coordonnées de l'un des points dans l'équation où m est la pente. Ensuite, résolvez pour b, qui est l'intersection de l'axe des ordonnées (Y) de la ligne qui relie les deux points.
Fiches méthodes. Si on a une fonction et qu'on cherche les coordonnées d'un point de sa courbe représentative : on choisit une valeur de x et on calcule y = f(x) en remplaçant x dans l'expression f(x) donnée. On obtient ainsi les coordonnées ( x ; y = f(x) ) d'un point de la représentation graphique de la fonction f.
En géométrie cartésienne, l'ordonnée à l'origine du graphe d'une fonction désigne la valeur de l'ordonnée y lorsque l'abscisse x vaut 0. En d'autres termes, c'est la valeur de l'ordonnée du point d'intersection entre la courbe de la fonction et la droite d'équation x = 0, aussi appelée axe des ordonnées.
Pour trouver son abscisse, on trace une parallèle à l'axe des ordonnées ; on lit alors l'abscisse du point à l' intersection avec l'axe horizontal. Pour trouver son ordonnée, on trace une parallèle à l'axe des abscisses ; on lit alors l'ordonnée du point à l' intersection avec l'axe vertical.
L'ordonnée à l'origine est déterminée en traçant une droite de régression linéaire qui passe par les valeurs x et y connues. Utilisez la fonction ORDONNEE. ORIGINE pour déterminer la valeur de la variable dépendante lorsque la variable indépendante est égale à 0 (zéro).
(Géométrie) Position d'un point d'un plan par rapport au deuxième axe, en général représenté verticalement (axe des y), la position par rapport au premier axe étant l'abscisse.
L'ordonnée à l'origine, qui est représentée par la lettre b, est la valeur de y lorsque x est zéro. Il s'agit donc de la position de la droite lorsque celle-ci croise l'axe des y. L'équation représente une droite dont la pente est 3 3 et dont l'ordonnée à l'origine est -4 4.
Abscisse à l'origine
La valeur de x pour un point (x, y) sur l'axe des abscisses (axe des x) lorsque y est égal à zéro. Voir aussi Ordonnée à l'origine.
Un graphique en XY ou nuage de points est constitué de deux axes gradués et légendés. L'axe des abscisses est à l'horizontale. L'axe des ordonnées est à la verticale. La légende de chaque axe doit comporter le nom ou le symbole de la grandeur et entre parenthèse le symbole de son unité.
Dans un plan cartésien, coordonnées des intersections d'une courbe avec les axes. Si une courbe intercepte l'axe des abscisses au point (a, 0) et l'axe des ordonnées au point (0, b), a est l'abscisse à l'origine et b est l'ordonnée à l'origine.
L'axe vertical d'un plan cartésien se nomme l'axe des ordonnées, ou l'axe des y . Cet axe gradué est orienté du bas vers le haut du plan cartésien. On y indique la valeur de la variable dépendante dans une relation entre deux variables.
Voici des exemples de formats qui fonctionnent : Degrés décimaux (DD) : 41.40338, 2.17403. Degrés, minutes et secondes (DMS) : 41°24'12.2"N 2°10'26.5"E. Degrés et minutes décimales (DMM) : 41 24.2028, 2 10.4418.
Dans l'alphabet, on a dans l'ordre : x, y et z. y est après x, c'est l'image de x. x est avant y, c'est l'antécédent de y.
La pente a pour valeur 0. Lorsque x augmente de 1, y ni augmente, ni diminue. L'ordonnée à l'origine a pour valeur -4. Cette relation peut souvent être représentée par l'équation y = b 0 + b 1x, où b 0 désigne l'ordonnée à l'origine et b 1 la pente.
Une équation de droite se présente sous la forme : y = ax + b avec a le coefficient directeur et b l'ordonnée à l'origine. Ici b = 2, car la droite coupe l'axe des ordonnées au point 2. Pour déterminer a, il suffit de se placer sur le point correspondant à l'ordonnée à l'origine (b).
L'ordonnée est la coordonnée verticale d'un point dans un repère cartésien. Elle indique la distance entre ce point et l'axe horizontal. Pour représenter l'ordonnée d'un point, on utilise généralement la lettre « y ».
Pour lire les coordonnées d'un point M dans un repère, on commence par tracer la parallèle à chacun des axes passant par M. On lit la valeur de l'abscisse du point M à l'intersection entre l'axe des abscisses et la parallèle à l'axe des ordonnées.
1) Dans un repère, représenter le nuage de points (xi ; yi). 2) Déterminer les coordonnées du point moyen G du nuage de points. y = (40 + 55 + 55 + 70 + 75 + 95) : 6 = 65. Le point moyen G du nuage de points a pour coordonnées (13 ; 65).
Le milieu d'un segment est le point situé à égale distance des deux extrémités. On peut trouver les coordonnées du milieu de 𝐴 𝐵 en divisant par deux chacune les distances horizontales et verticales entre 𝐴 et 𝐵 .