Astuce : Dans l'alphabet, on a dans l'ordre : x, y et z. y est après x, c'est l'image de x. x est avant y, c'est l'antécédent de y.
Comment calculer un antécédent d'une fonction ? Trouver le ou les antécédents d'une valeur a par une fonction f revient à résoudre équation f(x)=a f ( x ) = a . Exemple : Calculer l' antécédent de 1 par la fonction affine f(x)=2x+1 f ( x ) = 2 x + 1 c'est résoudre 2x+1=1⟺x=0 2 x + 1 = 1 ⟺ x = 0 .
La représentation graphique d'une fonction f est l'ensemble des points de coordonnées (x;f(x)). Autrement dit, l'antécédent x se lit sur l'axe des abscisses et l'image f(x) se lit sur l'axe des ordonnées.
On dit que l'image de 5 par la fonction f est 25. Cette image est unique. L'image de 5 par la fonction f se note f(5). On dit aussi que 5 est un antécédent de 25 par la fonction f.
Soit f la fonction définie par f:x->f(x)=x². Déterminer les antécédents (s'ils existent) de 4,1,1/4,0,-1. On résout : f(x)=4 soit x²=4 soit x=2 ou x=-2. Les antécédents de 4 par f sont 2 et -2.
Le seul antécédent de 8 par la fonction f est donc x = 4.
La représentation graphique
L'image de x par f est l'ordonnée du point de C_{f} d'abscisse x. Les antécédents de y par f sont les abscisses des points de C_{f} d'ordonnée y.
1 - A partir d'une courbe
Le ou les abscisses des points d'intersection avec la courbe (s'ils existent) sont les antécédents cherchés.
Pour calculer l'image d'un nombre par une fonction f [f : x → f(x)], il faut tout simplement remplacer x par la valeur de ce nombre.
1. Actes antérieurs de quelqu'un qui permettent de comprendre ou de juger sa conduite présente : Avoir de bons antécédents. 2. Origine, état antérieur de quelque chose : Les antécédents d'une affaire.
2) Nous voyons graphiquement que (3) = 9 et que (−3) = 9 Donc les antécédents de 9 par sont 3 et -3 .
Le seul antécédent de 4 par f est -2.
Image, antécédent
Remarque : par une fonction, une même image peut avoir plusieurs antécédents. Par contre, chaque antécédent n'a qu'une seule image.
Pour trouver les antécédents de 10 par la fonction f(x)=x²+1, on résout l'équation x²+1=10. On obtient d'abord x²=10-1, puis x²=9, puis x²-9=0, puis x²-3²=0, puis (x+3)(x-3)=0, puis x+3=0 ou x-3=0. Donc x=-3 ou x=3.
On lit donc que l'image de 7 est 4. On peut noter : (7) = 4.
Le seul antécédent de 12 par la fonction f est donc x = 4.
C'est l'outil mathématique qui, à un nombre, fait correspondre son carré. On dit que 36 est l'image de 6 par la fonction f. Cette image est unique. On dit aussi que 6 est l'antécédent de 36 par la fonction f.
L'antécédent de " 1 ": Pour déterminer l'antécédent de " 1 ", il suffit de résoudre l'équation: f ( x) = 1. Calcul du discriminant = b2 - 4 ac: = 22 - 4 x 1 x 1 = 0. Les solutions ? = - b 2 a .
L'image de 0 par la fonction f est 0.
Les fonctions sont souvent exprimées par une équation qui relie la variable x à son image. Ainsi, lorsque l'on veut déterminer l'image de xx par la fonction ff, il suffit de remplacer x dans l'équation par sa valeur ou son expression afin d'obtenir son image f(x) ou y.
On dit que 9 est l'image de -3 par la fonction f.
L'antécédent de 20 par la fonction g est 3. Lire des images sur une représentation graphique. On cherche l'image du nombre 2. on repère le nombre 2 sur l'axe des abscisses et on dessine un chemin vertical jusqu'à la courbe.
L'antécédent de −2 par la fonction f est −3. Soit f la fonction définie sur \mathbb{R} par f\left(x\right)=\left(3x+1\right)^{2}.
Quel est l'antécédent de -11 par la fonction f ? L'antécédent de −11 par la fonction f est 2. L'antécédent de −11 par la fonction f est -\dfrac{11}{7}.