Contrairement à ce que vous pouvez penser, il y a bien de l'air dans l'espace! Mais cet air est extraordinairement dilué. Ainsi, dans l'air que nous respirons, il y a environ 30 milliards de milliards de molécules d'air (azote + oxygène) par centimètre cube.
Dans l'espace, il n'y a rien du tout, ni atmosphère ni oxygène. Personne ne peut donc y respirer. C'est pourquoi les astronautes qui travaillent à l'extérieur de la Station Spatiale Internationale doivent revêtir un scaphandre dans lequel ils reçoivent de l'air. Sur la Lune, il n'y a pas d'atmosphère.
L'oxygène moléculaire est considéré comme rare dans le cosmos, ou du moins exceptionnellement difficile à détecter. « C'est la découverte la plus surprenante que nous ayons faite jusqu'à présent, » a déclaré Kathrin Altwegg de l'université de Bern, membre du projet Rosetta.
L'air provient de bouteilles d'oxygène et d'azote transportées régulièrement par les fusées à la station ISS, car il n'y a pas d'air dans l'espace. Pour respirer, il faut reconstituer l'environnement ambiant et fabriquer de l'air artificiel.
Une fois sorti de l'atmosphère, donc dans l'espace, on est presque dans le vide, donc il n'y a quasiment plus rien donc plus d'oxygène du tout. Des organismes comme les tardigrades, capables de survivre longtemps sans respirer, peuvent supporter une exposition prolongée au vide de l'espace, mais pas nous.
Sur Mars, l'atmosphère est très hostile pour les organismes qui ont besoin de dioxygène pour pouvoir vivre : la pression est environ 170 fois plus faible que sur Terre, car il y a très peu de molécules gazeuses présentes.
En effet, la Lune est souvent considérée comme dépourvue d'atmosphère, car elle n'absorbe pas de quantité mesurable de radiations, elle ne se décompose pas en couches et ne circule pas à la surface de la Lune.
Dans l'Univers la température atteint -272°C
Même dans l'espace, loin de toute étoile, on ne peut pas descendre aussi bas. Le record de froid dans l' Univers est de -272 °C, au sein de la nébuleuse du Boomerang, créée par une vieille étoile en train de mourir à 5 000 années-lumière de nous.
Vous ne pouvez pas verser d'eau dans un verre, mais vous pouvez l'aspirer d'un sac à l'aide d'une paille. Et c'est délicieux : après tout, cette eau provient vraisemblablement de transpiration et d'urine des membres de l'équipage.
Leurs poumons captent de l'oxygène (appelé plus justement dioxygène) quand il est sous sa forme gazeuse. Mais les humains ne peuvent pas utiliser ce même dioxygène quand il est dissout dans l'eau.
Le système russe de traitement de l'eau issue de la condensation (SRV-K) récupère la vapeur d'eau contenue dans l'air à bord de la SSI (humidité provenant de la transpiration), mais ne recycle pas l'urine comme. L'ECLSS récupère environ 90 % de l'eau utilisée par les astronautes et la transforme en eau potable.
L'atmosphère protège la vie sur Terre en filtrant le rayonnement solaire ultraviolet, en réchauffant la surface par la rétention de chaleur (effet de serre) et en réduisant partiellement les écarts de température entre le jour et la nuit.
En ce qui concerne la pression, il s'agit de la pression atmosphérique qui est de l'ordre de 1 bar (environ 1 013 hPa). Il est possible d'envisager à ce niveau une discussion sur les conditions autorisant la vie sur Terre avec la relation entre distance au Soleil, température et présence d'eau liquide.
Les différentes orbites
Certains satellites sont en orbite géostationnaire (GEO), à environ 36 000 km de la Terre. Ils se déplacent à la même vitesse que cette dernière et se maintiennent donc toujours au même endroit par rapport à un pays donné.
Mais aujourd'hui, l'Agence américaine d'observation océanique et atmosphérique (NOAA) a fixé la ligne de Kármán a une « frontière imaginaire » qui se trouve à environ 100 km d'altitude.
Le vide en astronomie se rencontre dans l'espace entre les corps célestes, ce que l'on nomme « espace ». Une pression de l'ordre de 10−8 Pa est appelée ultravide, ce qui, aux températures usuelles (300 K), correspond à une densité de l'ordre d'une dizaine de millions de molécules par centimètre cube.
L'entraînement sous l'eau permet de simuler les conditions d'impesanteur sur Terre. Ainsi, les astronautes portent des scaphandres entièrement équipés afin de s'approprier les techniques requises lors d'une sortie extra-véhiculaire.
Crème à raser, rasoir et serviette : le rasage en orbite n'est pas bien différent de celui sur Terre. Certains astronautes utilisent un rasoir électrique puisqu'il ne nécessite pas d'eau. En plus, les rasoirs électriques récupèrent automatiquement les poils : pratique!
– l'urine est collectée dans un réservoir, – chauffée dans une chaudière grâce à l'énergie solaire, – puis filtrée par une membrane qui sépare l'eau des nutriments : potassium, azote et phosphore. Le système permet donc d'obtenir de l'eau potable, au goût parfaitement neutre, et un excellent fertilisant.
C'est un constat qui se fait aisément en haute altitude, où l'eau bout en dessous de 100 °C, car l'atmosphère y est amoindrie et donc la pression également. De la même manière, de l'eau liquide placée dans une chambre à vide se mettra à bouillir rapidement et intensément.
Ainsi, tout comme les astronautes (et tout ce qui n'est pas bien attaché !), tout flotte dans l'ISS. Même l'eau.
Les scientifiques ont fait chuter un gaz quantique d'une tour pour dépasser le zéro absolu. Des physiciens allemands sont parvenus à produire la température la plus froide jamais enregistrée. Le zéro absolu, difficile à dépasser, est stabilisé à -273,15°C (soit 0 Kelvin).
Non. Alors, y vivre durablement et dans de bonnes conditions, peut-être, on a de l'eau liquide au pôle on peut en faire de l'hydrogène et de l'oxygène, on peut utiliser le régolite, la poussière lunaire pour faire de l'impression 3D pour en faire nos habitations sur la surface.
Cette course à l'espace culmine en 1969 avec les premiers humains posant le pied sur la Lune lors de la mission Apollo 11 emportant Neil Armstrong et Buzz Aldrin. Dix autres astronautes de la NASA foulent ensuite le sol lunaire jusqu'à Apollo 17 en 1972.