Deux fractions sont égales quand leurs numérateurs et dénominateurs sont proportionnels. Autrement dit, la valeur d'une fraction ne change pas quand on multiplie ou divise le numérateur et le dénominateur par un même nombre non nul.
1. Propriété des quotients égaux. Le quotient de deux nombres ne change pas si on multiplie ou on divise le numérateur et le dénominateurr par le même nombre non nul.
► Si tous les chiffres sont égaux deux à deux de gauche à droite, les nombres sont égaux. Exemple : 4236 = 4236.
Si tous les chiffres sont égaux, alors les nombres sont égaux. Exemple : 5,426 = 5,426.
I) Rappels. Lorsque l'on multiplie ou divise le numérateur et le dénominateur d'une fraction par un même nombre, on obtient une fraction égale à la fraction initiale. Exemple : 23=2×53×5=1015.
Deux fractions sont égales quand leurs numérateurs et dénominateurs sont proportionnels. Autrement dit, la valeur d'une fraction ne change pas quand on multiplie ou divise le numérateur et le dénominateur par un même nombre non nul.
Deux fractions sont égales si l'on passe de l'une à l'autre en multipliant (ou en divisant) le numérateur et le dénominateur par un même nombre non nul.
Ecritures fractionnaires égales
Si on multiplie ou divise le numérateur et le dénominateur d'une écriture fractionnaire par un même nombre différent de 0, on obtient une écriture fractionnaire égale.
Qu'est ce que l'égalité de quotients ? Propriété : Un quotient de nombres relatifs ne change pas quand on multiplie ou on divise le numérateur et le dénominateur par un même nombre relatif non nul (différent de 0).
Définition : une égalité est une expression comportant le signe = et deux membres de part et d'autre. Exemple : premier membre : 2 + 3 × 5 + 17 ; second membre : 2 + 15 + 17.
Pour tester une égalité, on remplace chaque lettre identique par une même valeur, et on dit si l'égalité est vraie ou fausse pour cette valeur. Dans tout ce cours, on considère l'égalité 3 − 1 = 2 + 5, qui est vraie pour certaines valeurs de , et fausse pour d'autres.
Une fraction égale à 3/4 qui a pour dénominateur 100 est : 75/100 car quand tu la simplifie par 25 cela donne 3/4 : 75/25 = 3 et 100/25 = 4.
→ Une fraction peut être égale à un autre nombre entier :
8 4 u = 2 unités; on a 2 bandes partagées en 4 morceaux. La fraction 4 est donc égale à 2, c'est un nombre entier.
Pour réduire des fractions au même dénominateur, il faut trouver le plus petit multiple commun aux dénominateurs. On distingue plusieurs cas : L'un des dénominateurs est multiple de l'autre. Exemple : \frac{4}{3} et \frac{7}{6} ; 6 = 3 × 2.
Pour multiplier deux quotients, on multiplie les numérateurs entre eux et les dénominateurs entre eux.
Définition 2 : Une fraction est le quotient de deux nombres entiers. Soit a et b deux nombres avec 0 b ≠ , alors dans la fraction a b , le nombre a est appelé numérateur et le nombre b est appelé dénominateur. Exemple 2 : 5 4 est une fraction dont 5 est le numérateur et 4 est le dénominateur.
L'écriture fractionnaire est une fraction quand a et b sont des nombres entiers. Fraction décimale : c'est une fraction dont le dénominateur est 1 ; 10 ; 100 ; 1000 …. Utile pour transformer un nombre décimal en fraction ! = 0,125 ….
Un nombre fractionnaire est une expression numérique formée d'un nombre naturel appelé la partie entière et d'une fraction inférieure à 1 appelée la partie fractionnaire. Les fractions supérieures à 1 peuvent être représentées sous forme de nombre fractionnaire.
La fraction qui a aussi 24 comme dénominateur et qui vaut 1/3 est 8/24.
Lorsque tu dois trouver, par exemple, le 2/3 d'un nombre, le dénominateur te dit en combien de parties égales tu dois diviser ton nombre (ici 3) et que ton numérateur te dit combien de parties utiliser (ici 2).
et bien simplifie le plus possible 5/6, 80/100 et 12/15 et vas vas arriver à 4/5 pour une de ces 3 fractions.