Dans l'exemple précédent, nous avons déterminé si une fonction était continue sur un intervalle en examinant sa courbe. On dit qu'une fonction est continue partout si elle est continue sur ℝ , ou de manière équivalente ] − ∞ , + ∞ [ .
Définition — Soient E et F deux espaces topologiques, f une application de E dans F et a un point de E. La fonction f est dite continue au point a si f(a) est une limite de f en ce point. Si F est séparé (ou même seulement T1) comme tout espace métrisable, il suffit pour cela qu'il existe une limite de f en ce point.
Si une suite de fonctions ( ) converge simplement sur vers une fonction , si la suite ( ) converge uniformément sur tout fermé borné de et si les sont continues sur , alors est continue sur .
Si la fonction f est continue, alors, pour tout réel k compris entre f(a) et f(b), alors la droite d'équation y = k coupe au moins une fois la courbe représentative de la fonction f. De plus, ce point d'intersection est un point dont l'abscisse est comprise entre a et b.
f (x0) = f1 (x0) + if2 (x0). On dit qu'une fonction f est dérivable sur un intervalle I lorsque f est dérivable en tout point de I.
Pour déterminer le sens de variation d'une fonction f , on étudie le signe de sa dérivée : f ′ ( x ) . Pour interpréter ce signe : Si f ′ ( x ) a le signe + sur un intervalle, alors f est croissante sur cet intervalle. Si f ′ ( x ) a le signe - sur un intervalle, alors f est décroissante sur cet intervalle.
Admettons un ensemble des réels R, ou si vous préférez une droite graduée de chiffres réels. On appelle intervalle l'ensemble des nombres réels compris entre deux réels positifs ou réels négatifs a et b, ou de la même façon l'ensemble des points de la droite dont la marque est entre a et b.
Pour comparer deux fonctions définies par f(x) et g(x): - on calcule f(x) - g(x), en simplifiant autant que possible l'expression. - on réalise le tableau de signes du résultat (revoir les signes des fonctions affines et des trinômes !).
Si ƒ est continue et strictement monotone sur un intervalle [a ; b], alors pour tout nombre k compris entre ƒ(a) et ƒ(b), alors l'équation ƒ(x) = k admet une unique solution dans [a ; b]. Pour localiser cette solution, on pourra utiliser sa calculatrice.
Une fonction f:I→R f : I → R est donc dérivable en a si et seulement s'il existe α∈R α ∈ R et une fonction ε définie dans un intervalle J ouvert contenant 0 , vérifiant limh→0ε(h)=0 lim h → 0 ε ( h ) = 0 tels que ∀h∈J, f(a+h)=f(a)+αh+hε(h). ∀ h ∈ J , f ( a + h ) = f ( a ) + α h + h ε ( h ) .
Théorème : Soit une fonction f définie et dérivable sur un intervalle I. - Si f '(x) ≤ 0, alors f est décroissante sur I. - Si f '(x) ≥ 0, alors f est croissante sur I. Exemple : Soit la fonction f définie sur R par f (x) = x2 − 4x .
Il s'agit en fait d'une propriété générale : une fonction n'est pas dérivable aux points où elle n'est pas continue. Pour cet exemple, la solution la plus efficace aurait ainsi été de montrer d'abord que la fonction n'était pas continue et donc pas dérivable.
Théorème (théorème fondamental du calcul intégral) : Si f est une fonction continue et positive sur [a,b] , alors la fonction F définie sur [a,b] par F(x)=∫xaf(t)dt F ( x ) = ∫ a x f ( t ) d t est dérivable sur [a,b] , et a pour dérivée f .
Soit une fonction continue et strictement monotone sur un intervalle. Si a et b désignent les extrémités de l'intervalle (c'est-à-dire a ou b sont des réels ou sont les symboles − ∞ ou + ∞ ) alors les extrémités de l'intervalle sont lim x → a f ( a ) et lim x → b f ( x ) (ces limites pouvant être elles-mêmes infinies).
Si une fonction f est définie, continue et strictement monotone sur un intervalle [ a ; b ] [a; b] [a;b] alors, pour tout réel k compris entre f ( a ) f(a) f(a) et f ( b ) f(b) f(b), l'équation f ( x ) = k f(x)=k f(x)=k a une unique solution dans l'intervalle [ a ; b ] [a; b] [a;b].
Si la fonction f ( x , y ) admet des dérivées partielles (par rapport à et ) qui sont continues, et si l'on se fixe des réels et , il existe une solution et une seule de l'équation y ′ = f ( x , y ) , définie sur un intervalle contenant , qui vérifie u ( x 0 ) = y 0 .
Une application simple du théorème de Baire montre que l'ensemble des fonctions monotones quelque part est maigre dans l'ensemble des fonctions continues sur [a,b], par exemple.
Critères d'intégrabilité
Une fonction réglée est intégrable sur un intervalle fermé. En particulier on en déduit que les fonctions continues, continues par morceaux, monotones ou encore à variations bornées sont toutes intégrables sur un intervalle fermé.
Théorème de continuité sous l'intégrale: Soient I et J deux intervalles de R et f une fonction définie sur I × J vérifiant: 1. pour tout x ∈ I, la fonction t ↦→ f(x, t) est continue par morceaux sur J ; 2. pour tout t ∈ J, la fonction x ↦→ f(x, t) est continue sur I ; 3.
Toutes les fonctions n'ont pas de primitive. Et une primitive, si elle existe, n'est jamais unique : elle n'est définie qu'à une constante près. Le théorème suivant garantit l'existence d'une primitive lorsque la fonction est continue.
Une fonction n'est pas dérivable en un réel a de son domaine si notamment la dérivée à gauche en ce point est différente de la dérivée à droite en ce même point.
La fonction f(x) = |x| a une dérivée discontinue en x = 0. |x| n'est pas dérivable en 0. Elle n'est donc pas dérivable sur R.
La fonction valeur absolue n'est pas dérivable en 0.
Comme f est à valeurs dans J, leurs images respectives f ( a ) et f ( b ) sont deux deux réels de l'intervalle J. Cas où les deux fonctions f et g ont le même sens de variation. f et g sont croissantes : Comme f est strictement croissante sur I, si a < b alors f ( a ) < f ( b ) (on conserve l'ordre !)