>Après une multitude de retards, le réacteur devrait être prêt vers 2030… et il s'agit juste d'une expérience scientifique : en fait, l'engin utilisera plus d'énergie qu'il n'en produira. ITER appartient à la catégorie des générateurs « Tokamak ».
Description. ITER est le plus grand projet scientifique mondial des années 2010. Il contiendra le plus grand réacteur à fusion nucléaire du monde lors de son achèvement en 2025.
Deuxième « segment » de la chambre à vide finalisé La deuxième « section » de 40 degrés de la chambre à vide ITER sera finalisé au mois d'avril 2022. Construit autour du secteur n°1(7) fourni par la Corée, ce « sous-assemblage » a été finalisé plus vite que le premier grâce aux enseignements tirés.
Bombardée de neutrons, la couverture en béryllium du tokamak d'Iter va se désagréger rapidement — la durée de vie de ce métal dans un réacteur de fusion serait de cinq à dix ans 11. Il faudra non seulement remplacer ses modules régulièrement, mais évacuer après chaque expérience les poussières de béryllium.
Selon le calendrier officiel d'ITER, les premiers essais interviendront vers 2025 et seront suivis, s'ils s'avèrent concluants, de nouveaux essais dans les décennies qui suivent. En somme, pas de projets de fusion nucléaire avant 2050, dans le meilleur des cas.
Les réacteurs à fusion du futur ne produiront pas de déchets nucléaires à longue période et haute activité, et la fusion du cœur du réacteur est pratiquement impossible.
Aucun risque de fusion du cœur : Un accident nucléaire de type Fukushima ne peut pas se produire dans un réacteur de fusion. Les conditions propices aux réactions de fusion sont difficiles à atteindre ; en cas de perturbation, le plasma se refroidit en l'espace de quelques secondes et les réactions cessent.
Incendie, risque sismique, étanchéité des composants... Plusieurs dangers pourraient solder le projet Iter par un échec. L'avenir de la fusion nucléaire en serait quand même protégé, tant les États et les magnats de l'industrie de la tech ou de l'énergie financent des recherches et des projets.
L'énergie libérée par ce phénomène est dix fois supérieure à celle libérée lors de la fission. D'autre part, la fusion nucléaire ne produit pas de déchets radioactifs puisque les produits de fusion sont stables. L'énergie des étoiles provient de cycles de réactions de fusion nucléaires.
Il atteindrait sa pleine puissance au mieux en 2035, mais sans la certitude de devenir énergétiquement viable. Pour ce qui est des premiers réacteurs prévus pour une utilisation industrielle plus rentable que la fission, certains experts s'accordent à dire qu'il faudra attendre au moins 2040-2050.
L'installation ITER est actuellement en cours de construction en France, dans le département des Bouches-du-Rhône.
Le 30 décembre 2021, les chercheurs et ingénieurs de l'Institut de Physique des Plasmas de l'Académie des Sciences à Hefei en Chine, ont réussi à maintenir un plasma de fusion à une température de 70 millions de degrés pendant plus de 17 minutes (1056 secondes) dans le tokamak EAST.
La difficulté réside dans l'énergie cinétique très élevée de ces neutrons : 14,1 MeV soit environ 7 fois plus que celle des neutrons « rapides » produits par les réactions de fission.
C'est pourquoi les recherches en fusion se concentrent majoritairement sur la réaction entre deux isotopes de l'hydrogène : le deutérium et le tritium, étant la plus « facile » à réaliser bien qu'elle nécessite tout de même d'atteindre une température d'environ 150 millions de degrés.
Le 15 septembre 2022, le Conseil ITER a nommé Pietro Barabaschi le quatrième* directeur général d'ITER Organization. Le nouveau directeur général prendra ses fonctions au mois d'octobre.
D'après la roadmap de l'Union européenne, ITER sera suivi par « DEMO », un démonstrateur de la faisabilité économique de la fusion. Des projets concurrents sont en cours de développement, aux Etats-Unis, au Canada, au Royaume-Uni et en Chine. En cas de réussite, la fusion pourrait changer le cours de la civilisation.
Le processus de fusion nucléaire ne peut avoir lieu que dans des conditions de température et de pression particulières. A titre d'exemple, au cœur du Soleil, la pression est égale à 200 milliards de fois la pression atmosphérique terrestre et la température centrale atteint environ 15 millions de degrés.
Le Comité Industriel ITER (C2I) œuvre pour optimiser les retombées économiques sur la région en développant les relations entre ITER et le tissu industriel local, particulièrement lors des phases de construction et d'assemblage.
la réalisation et l'alimentation du milieu réactif (plasma), sa stabilité, l'obtention des températures nécessaires de 150 à 300 millions de °C, la vitesse (de l'ordre de 1 000 km/s) et le contrôle de trajectoire des particules, l'élimination des impuretés.
Aucun danger, buvez à volonté, rassurent les autorités. On peut boire au robinet sans modération: les autorités ont écarté toute inquiétude sur la qualité de l'eau potable, suite à un communiqué alarmiste d'une association dénonçant une "contamination" radioactive au tritium suivi de rumeurs en région parisienne.
Sur Terre, pour récupérer de l'énergie, les scientifiques tentent d'utiliser la fusion de deutérium et de tritium, deux isotopes de l'hydrogène (noyaux contenant un proton et un ou deux neutrons). Cette réaction donne elle aussi naissance à un noyau d'hélium très chaud, et libère un neutron de grande énergie.
Lors des travaux de mise au point de la fusion contrôlée, les ingénieurs et les chercheurs se heurtent à trois difficultés majeures : 1) la température, 2) la densité et 3) le confinement.
Il faut brûler 1,76 tonne de pétrole pour obtenir la même énergie que celle libérée par la fission d'un gramme d'uranium 235.
La chaleur produite par ces réactions de fission va servir à produire de la vapeur, laquelle va faire tourner une turbine électrique. Ce point est commun à toutes les centrales. Pour arrêter le réacteur, c'est-à-dire pour stopper la réaction en chaîne, il faut agir sur la production des neutrons, ou les capturer.