La variance En termes plus mathématiques elle peut être considérée comme une mesure servant à caractériser la dispersion d'une distribution ou d'un échantillon. Grossièrement on peut la voir comme la moyenne des carrés moins le carré des moyennes.
Contrairement à l'étendue et à l'écart interquartile, la variance est une mesure qui permet de tenir compte de la dispersion de toutes les valeurs d'un ensemble de données. C'est la mesure de dispersion la plus couramment utilisée, de même que l'écart-type, qui correspond à la racine carrée de la variance.
Si une variance est nulle, cela veut dire que toutes les observations sont égales à la moyenne, ce qui implique qu'il n'y a aucune variation de celles-ci. Par contre, plus une variance est élévée plus la dispersion des observations est importante ; elle est très sensible aux valeurs extrêmes.
L'analyse de la variance (ANOVA) est très utilisée en statistique et dans le domaine des études marketing. Cette méthode analytique puissante sert à mettre en avant des différences ou des dépendances entre plusieurs groupes statistiques.
Si les observations pour chaque groupe sont proches de la moyenne du groupe, la variance à l'intérieur des échantillons est faible. Toutefois, si les observations pour chaque groupe sont plus éloignées de la moyenne du groupe, la variance à l'intérieur des échantillons est plus élevée.
Plus l'écart-type est grand, plus les valeurs sont dispersées autour de la moyenne ; plus l'écart-type est petit, plus les valeurs sont concentrées autour de la moyenne. Le carré de l'écart-type est la variance ; la variance est aussi un indicateur de dispersion.
On peut interpréter la variance comme la moyenne des carrés des écarts à la moyenne (rigoureusement: l'espérance des carrés des écarts à l'espérance, vulgairement: Moyenne des carrés moins le carré Cela signifie que ses...) des moyennes). Elle permet de caractériser la dispersion.
Elle peut être estimée à l'aide d'un échantillon et de la moyenne empirique ou déterminée grâce à l'espérance si celle-ci est connue. La variance apparait comme un cas particulier de covariance.
- Etant calculée comme l'espérance d'un nombre au carré, la variance est toujours positive ou nulle.
Si la série statistique est donnée par un tableau statistique (xi,ni) ( x i , n i ) , ce qui signifie que la valeur xi est prise ni fois, on peut directement calculer la variance par la formule : V(X)=1n1+⋯+nNN∑i=1ni(xi−¯X)2.
Il est défini comme la racine carrée de la variance ou, de manière équivalente, comme la moyenne quadratique des écarts par rapport à la moyenne. Il se note en général avec la lettre grecque σ (« sigma »), d'après l'appellation standard deviation en anglais.
L'écart-type s'obtient simplement en calculant la racine carrée de la variance.
La variance d'une variable aléatoire V(X) est l'espérance mathématique du carré de l'écart à l'espérance mathématique. C'est un paramètre de dispersion qui correspond au moment centré d'ordre 2 de la variable aléatoire X. C'est l'équivalent de la variance observée S2 .
L'espérance est donc la moyenne que l'on peut espérer si l'on répète l'expérience un grand nombre de fois. - La variance (respectivement l'écart-type) est la variance (respectivement l'écart- type) de la série des xi pondérés par les probabilités pi.
L'écart-type sert à mesurer la dispersion, ou l'étalement, d'un ensemble de valeurs autour de leur moyenne. Plus l'écart-type est faible, plus la population est homogène.
Non, la variance est toujours positive ou nulle. L'écart type vaut la racine carrée de la variance or on ne peut pas calculer la racine carrée d'un nombre négatif.
La variance de la loi binomiale est donnée par l'expression n p ( 1 − p ) . Ici, (n\) est le nombre d'expériences et est la probabilité de réussite. Si la variance d'une variable aléatoire est petite, alors les valeurs de la variable sont souvent proches de l'espérance.
Soit (Ω,T,P) ( Ω , T , P ) un espace de probabilité et X:Ω→R X : Ω → R une variable aléatoire. Lorsque X2 est d'espérance finie, on appelle variance de X le réel V(X)=E((X−E(X))2)=E(X2)−(E(X))2 V ( X ) = E ( ( X − E ( X ) ) 2 ) = E ( X 2 ) − ( E ( X ) ) 2 et écart-type de X le réel σ(X)=√V(X) σ ( X ) = V ( X ) .
Le mot « espérance » vient du langage des jeux : lorsque X désigne le gain, E(X) est le gain moyen que peut espérer un joueur sur un grand nombre de parties. Dans l'exemple précédent, l'espérance mathématique est négative.
L'écart type sert à déterminer la dispersion des données d'un échantillon par rapport à la moyenne. Un écart type important indique que les données sont dispersées autour de la moyenne. Cela signifie qu'il y a beaucoup de variances dans les données observées.
L'écart-type ne peut pas être négatif. Un écart-type proche de signifie que les valeurs sont très peu dispersées autour de la moyenne (représentée par la droite en pointillés). Plus les valeurs sont éloignées de la moyenne, plus l'écart-type est élevé.
Les valeurs ( x i - x ¯ ) sont les « écarts à la moyenne »; les « carrés des écarts à la moyenne » sont donc ( x i - x ¯ ) 2 . En faisant la moyenne des carrés des écarts à la moyenne, on obtient la variance.
Pour une variable aléatoire 𝑋 , l'écart-type est noté 𝜎 ou 𝜎 . Son carré, appelé la variance V a r ( 𝑋 ) , est défini par 𝜎 = ( 𝑋 ) = 𝐸 ( 𝑋 − 𝐸 ( 𝑋 ) ) , V a r où 𝐸 ( 𝑋 ) désigne l'espérance de la variable aléatoire 𝑋 . L'écart-type 𝜎 s'obtient en prenant la racine carrée positive de la variance.
C'est le ratio entre l'écart-type σx et la moyenne ¯x d'une variable quantitative X . Plus il est important , plus la dispersion est grande. Plus il est proche de 0, plus les données sont homogènes. Il souffre des mêmes inconvénients que la moyenne et l'écart-type : il est sensible aux valeurs extrêmes.
Moyenne : La moyenne arithmétique est la somme des valeurs de la variable divisée par le nombre d'individus. La variance : La variance est la moyenne des carrés des écarts à la moyenne. L'écart-type : c'est la racine carrée de la variance.