Les facteurs communs pour 126,54 sont 1,2,3,6,9,18 1 , 2 , 3 , 6 , 9 , 18 . Le plus grand facteur commun des facteurs numériques 1,2,3,6,9,18 1 , 2 , 3 , 6 , 9 , 18 est 18 . Ce site utilise des cookies pour vous garantir la meilleure expérience sur notre site web.
54 = 26*2 + 2 26 = 2*13 + 0 Le PGCD de 26 et 54 est 2. 72 = 24*3 + 0 Le PGCD de 72 et 24 est 24.
1. Les diviseurs de 90 sont : 1, 2, 3, 5, 6, 9, 10, 15, 18, 30, 45, 90. Les diviseurs de 126 sont : 1, 2, 3, 6, 7, 9, 14, 18, 21, 42, 63, 126.
2. D'après la première partie, 18 est le plus grand commun diviseur de 90 et 126 donc elle pourra réaliser au maximum 18 bouquets.
Par exemple, le PGCD de 16 et 24 est 8, car il s'agit du plus grand diviseur commun entre 16 et 24. Ces nombres ont aussi d'autres diviseurs communs, soit 2 et 4, mais il ne s'agit pas de leur plus grand diviseur commun.
Exemples. Trouver le PGCD de 28 et 42 : 1.
Pour trouver le PGCD de deux petits nombres on peut faire la liste de tous leurs diviseurs. Prenons par exemple 18 et 27 : Les diviseurs de 18 sont : 1, 2, 3, 6, 9, 18. Les diviseurs de 27 sont : 1, 3, 9, 27.
126 = 2 × 63 = 2 × 2 × 6 75 = 3 × 25 = 2 × 2 × 2 × 3 63 n'est pas divisible par 2.
1) Calculer le PGCD des nombres 135 et 210. Algorithme d'Euclide 210 = 135 x 1 + 75 135 = 75 x 1 + 60 75 = 60 x 1 + 15 60 = 15 x 4 + 0 Le dernier reste non nul est 15, donc PGCD (135 ; 210) = 15.
PGCD (2622 ; 2530) = PGCD (2530 ; 92) = PGCD (92 ; 46) = 46 car 46 est un diviseur de 92. Le chocolatier peut réaliser au maximum 46 paquets • 2622 46 = 57 et 2530 46 = 55 Chaque paquet sera composé de 57 œufs et de 55 poissons.
Les diviseurs de 54 sont : 1, 2, 3, 6, 9, 18 et 27. Les diviseurs communs à 72 et 54 sont donc : 1, 2, 3, 6, 9, et 18.
126 est multiple de 18. 126 est multiple de 21. 126 est multiple de 42. 126 est multiple de 63.
Plus grand diviseur commun
Un diviseur commun à deux ou plusieurs nombres entiers est un nombre entier qui divise chacun d'eux. Exemple : 36 = 12 × 3 et 24 = 12 × 2. Donc 12 est un diviseur commun à 36 et à 24.
Les diviseurs communs a et b sont les diviseurs du PGCD(a;b). Pour trouver les diviseurs communs à 15 et 20, il suffit de trouver les diviseurs du PGCD(15;20). Donc les diviseurs communs à 15 et 20 sont -5;-1;1;5.
Les diviseurs de 18 sont 1, 2, 3, 6, 9 et 18. Les diviseurs communs de 12 et 18 sont 1, 2, 3, et 6. Le PGCD (12 ; 18) est 6. Méthode 2 : Algorithme des soustractions.
* 36 = 2 x 2 x 3 x 3. * 84 = 2 x 2 x 3 x 7. Le PGCD est le produit des facteurs communs aux deux nombres (ceux en rouge) donc 2 x 2 x 3 = 12.
Les diviseurs de 12 sont : 1;2; 3; 4 ; 6 ; 12. Les diviseurs de 15 sont : 1; 3; 5 ; 15. Donc : pgcd(12; 15) = 3.
En arithmétique élémentaire, le plus grand commun diviseur ou PGCD de deux nombres entiers non nuls est le plus grand entier qui les divise simultanément. Par exemple, le PGCD de 20 et de 30 est 10, puisque leurs diviseurs communs sont 1, 2, 5 et 10.
Les facteurs communs pour 27,36 sont 1,3,9 1 , 3 , 9 . Le plus grand facteur commun des facteurs numériques 1,3,9 1 , 3 , 9 est 9 .
Indiquez tous les facteurs pour 72,120 pour déterminer les facteurs communs. Les facteurs communs pour 72,120 sont 1,2,3,4,6,8,12,24 1 , 2 , 3 , 4 , 6 , 8 , 12 , 24 . Le plus grand facteur commun des facteurs numériques 1,2,3,4,6,8,12,24 1 , 2 , 3 , 4 , 6 , 8 , 12 , 24 est 24 .
Les diviseurs communs de 30 et 18 étant 1, 2, 3 et 6, leur PGCD est 6. Ce qui se note : PGCD(30, 18) = 6. Les diviseurs communs à plusieurs entiers sont les diviseurs de leur PGCD.
Le plus grand commun diviseur à 162 et 108 est 54; le cuisinier peut donc préparer 54 barquettes.