20 a pour diviseurs 1,2,4,5,10,20. 25 a pour diviseurs 1,5,25. Le plus grand commun diviseur est 5.
En arithmétique élémentaire, le plus grand commun diviseur ou PGCD de deux nombres entiers non nuls est le plus grand entier qui les divise simultanément. Par exemple, le PGCD de 20 et de 30 est 10, puisque leurs diviseurs communs sont 1, 2, 5 et 10.
Les diviseurs communs a et b sont les diviseurs du PGCD(a;b). Pour trouver les diviseurs communs à 15 et 20, il suffit de trouver les diviseurs du PGCD(15;20). Donc les diviseurs communs à 15 et 20 sont -5;-1;1;5.
Le PGCD de 25 et 100 est 25.
Les diviseurs de 25 sont : 1; 5; 25. Les diviseurs de 50 sont : 1;2; 5; 10 ; 25; 50. Donc : pgcd(25; 50) = 25 (car 50 est un multiple de 25).
Les diviseurs de 18 sont 1, 2, 3, 6, 9 et 18. Les diviseurs communs de 12 et 18 sont 1, 2, 3, et 6. Le PGCD (12 ; 18) est 6. Méthode 2 : Algorithme des soustractions.
Les diviseurs communs de 30 et 18 étant 1, 2, 3 et 6, leur PGCD est 6. Ce qui se note : PGCD(30, 18) = 6. Les diviseurs communs à plusieurs entiers sont les diviseurs de leur PGCD.
Pour trouver le PGCD de deux petits nombres on peut faire la liste de tous leurs diviseurs. Prenons par exemple 18 et 27 : Les diviseurs de 18 sont : 1, 2, 3, 6, 9, 18. Les diviseurs de 27 sont : 1, 3, 9, 27.
Par exemple, le PGCD de 16 et 24 est 8, car il s'agit du plus grand diviseur commun entre 16 et 24. Ces nombres ont aussi d'autres diviseurs communs, soit 2 et 4, mais il ne s'agit pas de leur plus grand diviseur commun.
Pour cela, il faut calculer le PGCD du numérateur et du dénominateur puis diviser l'ensemble de la fraction par le PGCD obtenu. Par exemple, pour simplifier la fraction [frac{312}{845}] on calcule le PGCD de 312 et 845 puis on divise le numérateur et le dénominateur de la fraction par ce PGCD.
Plus grand diviseur commun
Un diviseur commun à deux ou plusieurs nombres entiers est un nombre entier qui divise chacun d'eux. Exemple : 36 = 12 × 3 et 24 = 12 × 2. Donc 12 est un diviseur commun à 36 et à 24.
PGCD : le plus grand commun diviseur
Par exemple : 120 = 23 x 3 x 5 et 3920 = 24 x 5 x 72 Ces décompositions ont en commun : 23 et 5 Donc le PGCD de 120 et 3920 est 23 x 5, soit 40. Que l'on peut noter : PGCD(120;3920) = 40.
Reprenons 30 et 48 : 30=2×3×5. 48=2×2×2×2×3. On remarque que le produit 2×3=6 est commun aux deux et est le plus grand produit commun, il est donc le PGCD.
Le PGCD est le dernier reste non nul, c'est-à-dire PGCD(72 ;40)=8. Deux nombres a et b sont dits premiers entre eux si PGCD(a;b)=1. Si a et b sont premiers entre eux, alors la fraction a b est irréductible.
Exemple : Recherche du PGCD des nombres 10, 20 et 25. 10 a pour diviseurs 1,2,5,10. 20 a pour diviseurs 1,2,4,5,10,20.
Indiquez tous les facteurs pour 45,75 pour déterminer les facteurs communs. Les facteurs communs pour 45,75 sont 1,3,5,15 1 , 3 , 5 , 15 . Le plus grand facteur commun des facteurs numériques 1,3,5,15 1 , 3 , 5 , 15 est 15 .
2. D'après la première partie, 18 est le plus grand commun diviseur de 90 et 126 donc elle pourra réaliser au maximum 18 bouquets.
PGCD ( 182 ; 78 ) = 26 Julie pourra faire 26 bouquets identiques.
Calculer le PGCD de 36 et 60 à l'aide de l'algorithme des différences. Donc le PGCD de 60 et 36 est un diviseur de 24.
4) Par conséquent, le PGCD de 168 et 86 est 2.
PGCD (34 ; 51) = 17, donc les nombres 25 et 48 ne sont pas premiers entre eux.
Indiquez tous les facteurs pour 72,120 pour déterminer les facteurs communs. Les facteurs communs pour 72,120 sont 1,2,3,4,6,8,12,24 1 , 2 , 3 , 4 , 6 , 8 , 12 , 24 . Le plus grand facteur commun des facteurs numériques 1,2,3,4,6,8,12,24 1 , 2 , 3 , 4 , 6 , 8 , 12 , 24 est 24 .
Le plus grand commun diviseur à 162 et 108 est 54; le cuisinier peut donc préparer 54 barquettes.
PGCD(110 ; 88) = 22
Super !