1) Calculer le PGCD des nombres 135 et 210. Algorithme d'Euclide 210 = 135 x 1 + 75 135 = 75 x 1 + 60 75 = 60 x 1 + 15 60 = 15 x 4 + 0 Le dernier reste non nul est 15, donc PGCD (135 ; 210) = 15.
Donc, le PGCD de 126 et 210 est 42 et non 1.
Il s'agissait de considérer l'ensemble E des diviseurs de 210 (16 éléments) : l, 2, 3, 5, 6, 7, 10, 14, 15, 21, 30, 35, 42, 70, 105, 210.
Un nombre premier est donc un nombre dont ses seuls diviseurs sont 1 et lui-même. Citons quelques nombres premiers : 2, 3, 5, 7, 11, 13, 17, 19, … et quelques plus grands : 22 091, 9 576 890 767 ou encore ce géant : 95 647 806 479 275 528 135 733 781 266 203 904 794 419 563 064 407.
La divisibilité est une propriété qui indique qu'un nombre peut être entièrement divisé par un autre nombre, c'est-à-dire sans reste. 54÷6=9 reste 0 54 ÷ 6 = 9 reste 0 , donc 54 est divisible par 6 . 22÷5=4 reste 2 22 ÷ 5 = 4 reste 2 , donc 22 n'est pas divisible par 5 .
Rappel sur le PGCD
On a vu en classe de 3ème que le PGCD de deux nombres a et b est le plus grand nombre qui divise à la fois a et b. Par exemple, le PGCD de 15 et 10 est 5. Pour déterminer le PGCD de deux nombres, on peut faire une liste des diviseurs de a puis de b et déterminer le plus grand diviseur commun.
L'indicatif régional 210 est l'un des indicatifs téléphoniques régionaux de l'État du Texas aux États-Unis.
2. D'après la première partie, 18 est le plus grand commun diviseur de 90 et 126 donc elle pourra réaliser au maximum 18 bouquets.
PGCD : le plus grand commun diviseur
Par exemple : 120 = 23 x 3 x 5 et 3920 = 24 x 5 x 72 Ces décompositions ont en commun : 23 et 5 Donc le PGCD de 120 et 3920 est 23 x 5, soit 40. Que l'on peut noter : PGCD(120;3920) = 40.
Le PGCD de 25 et 100 est 25.
Le PGCD est égal au dernier reste non nul : 27
Marc à 108 billes rouges et 135 noires.
Alors, puisqu'on sait que le plus grand commun diviseur de 240 et 400 est 80, cela veut dire que tu auras 80 bouquets.
PGCD ( 182 ; 78 ) = 26 Julie pourra faire 26 bouquets identiques.
En arithmétique élémentaire, le plus grand commun diviseur ou PGCD de deux nombres entiers non nuls est le plus grand entier qui les divise simultanément. Par exemple, le PGCD de 20 et de 30 est 10, puisque leurs diviseurs communs sont 1, 2, 5 et 10.
Les diviseurs communs de 30 et 18 étant 1, 2, 3 et 6, leur PGCD est 6. Ce qui se note : PGCD(30, 18) = 6. Les diviseurs communs à plusieurs entiers sont les diviseurs de leur PGCD.
Plus grand diviseur commun
Un diviseur commun à deux ou plusieurs nombres entiers est un nombre entier qui divise chacun d'eux. Exemple : 36 = 12 × 3 et 24 = 12 × 2. Donc 12 est un diviseur commun à 36 et à 24.
La liste de ses diviseurs entiers (c'est-à-dire la liste des nombres entiers qui divisent 442) est la suivante : 1, 2, 13, 17, 26, 34, 221, 442. Pour que 442 soit un nombre premier, il aurait fallu que 442 ne soit divisible que par lui-même et par 1.
→ Quand son chiffre des unités est 0,2, 4, 6 ou 8 et uniquement dans ce cas. 4 689 n'est pas divisible par 2 → 4 689 est un nombre impair. Un nombre entier est divisible par 5 : → Quand son chiffre des unités est 0 ou 5 et uniquement dans ce cas.
5) divisibles par 5 : 175 ; 125 ; 345 ; 110 ; 440.
Pour savoir si un nombre est divisible par 7, il suffit d'ajouter le nombre de dizaines (pas le chiffre, le nombre!) au produit des unités par 5. Si ce nouveau nombre (plus petit) est divisible par 7 alors le nombre de départ l'est aussi.