sin(10°) ≈ 0,174 (en descendant : troisième colonne en partant de la gauche) ; sin(50°) ≈ 0,766 (en montant : troisième colonne en partant de la droite).
Le sinus de 30 degrés est égal à 0,5.
75 degrés est simplement 75. Et puis quatre divisé par 60 égale 0,06666. Et 12 divisé par 3600 égale 0,00333. Donc, en ajoutant ces chiffres entre parenthèses, on obtient sinus 75.06999.
Dans un triangle rectangle, le sinus d'un angle est égal au rapport de la longueur du côté opposé à cet angle sur la longueur de l'hypoténuse.
Le sinus de 45 degrés est 0,70710 (arrondi à cinq décimales).
Calcul du sinus
Le résultat est : sin 50° = 0,766 (au millième près).
La valeur exacte de sin(90°) sin ( 90 ° ) est 1 .
cos 12° 0,978 ; cos 20° 0,94 ; cos 45° 0,707 ; cos 60° = 0,5 cos 90° = 0 ; cos 0° = 1.
Trigonométrie Exemples
La valeur exacte de sin(60°) sin ( 60 ° ) est √32 . Le résultat peut être affiché en différentes formes.
Angle droit : Angle de 90 degrés. Angle obtus : Angle entre 90 et 180 degrés.
La mesure d'un angle droit est de 90°. La mesure d'un angle obtus se situe entre 90° et 180°. La mesure d'un angle plat est de 180°. La mesure d'un angle rentrant se situe entre 180° et 360°.
Sinus = côté opposé / hypoténuse.
Sin = Opposé / Hypoténuse (S.O.H.) Cos = Adjacent / Hypoténuse (C.A.H.) Tan = Opposé / Adjacent (T.O.A.)
Nous pouvons donc également voir que le sinus de 30 degrés est égal à un demi et le cosinus de 30 degrés est égal à racine de trois sur deux.
Comme l'angle 45° se situe dans le deuxième quadrant, cos(45°) est négatif. On peut donc en déduire que cos(45°) = -√1/2 = -0,7071.
Le sinus de 𝐴 moins 𝐵 est égal à sin 𝐴 cos 𝐵 moins cos 𝐴 sin 𝐵. Nous pouvons donc réécrire sin 180 moins 𝑥 comme sin 180 multiplié par cos 𝑥 moins cos 180 multiplié par sin 𝑥 Nous savons que le sinus de 180 degrés est égal à zéro. Le cos de 180 degrés est égal à moins un. Zéro multiplié par cos 𝑥 est égal à zéro.
Cavités logées dans le crâne qui sont remplies d'air et qui entourent les fosses nasales. Les sinus contribuent au réchauffement et à l'humidification de l'air inspiré. Ils jouent également le rôle de caisse de résonance dans la production de sons.
Trigonométrie Exemples
La valeur exacte de sin(π6) sin ( π 6 ) est 12 .
Pour traçer un angle de 45°, il suffit de traçer une diagonale d'un carré. Un angle à 135° est égal à 90° + 45°, donc on traçe une diagonale d'un carré dans les sens opposé. Un triangle équilatéral à trois cotés égaux et trois angles à 60°.
Le rapport trigonométrique sinus ne s'utilise qu'avec les angles aigus d'un triangle rectangle. Ainsi, on ne cherche jamais le sinus à partir de l'angle droit.
Ces fonctions trigonométriques ont déjà été étudiées en Seconde. Aux deux infinis, les fonctions sinus et cosinus n'admettent pas de limite. En effet ces deux fonctions étant 2 -périodiques, elles reproduisent à l'infini un motif. Elles ne vont ni vers une valeur finie, ni vers un infini.