La bissectrice d'un angle est la droite qui partage un angle en deux angles de même mesure. La bissectrice d'un angle peut également être définie comme l'ensemble des points à égale distance des deux côtés de l'angle. Cette deuxième définition permet de tracer la bissectrice d'un angle avec un compas.
Tracer un nouvel arc dans l'ouverture de l'angle. Refaire l'opération à partir de l'autre intersection. À l'aide d'une règle, tracer la droite qui relie le sommet de l'angle au point d'intersection des deux derniers arcs tracés. Cette droite est la bissectrice de l'angle.
- Pour tracer la bissectrice de l'angle , on trace un arc de cercle de centre O qui coupe les deux demi-droites [Ox) et [Oy) en A et B respectivement. - Puis on tracedeux arcs de cerlce de même rayon, l'un de centre A, l'autre de centre B.
La bissectrice de l'angle AOB est aussi l'ensemble des points qui sont à égale distance des demi-droites [OA) et [OB). La bissectrice extérieure de l'angle AOB est la droite perpendiculaire à D passant par O. Si B' est le symétrique de B par rapport à O, la bissectrice extérieure de AOB est la bissectrice de AOB'.
Médiatrice : droite passant par le milieu d'un segment et perpendiculaire à ce segment. Bissectrice : demi-droite coupant un angle en deux parties égales.
Remarque : la bissectrice d'un angle est un axe de symétrie pour cet angle. Propriété : Si un point M appartient à la bissectrice d'un angle, alors M est à égale distance des côtés de cet angle. Réciproquement : Si un point M est à égale distance des côtés d'un angle alors M appartient à la bissectrice de cet angle.
Le point O est le sommet de l'angle . Les demi-droites en sont les côtés.
Le centre du cercle inscrit dans un triangle est le point d'intersection des trois bissectrices d'un triangle. Dans un triangle, l'hypoténuse est le plus grand côté. Une médiatrice est une droite qui passe par le milieu d'un segment et qui est perpendiculaire à ce même segment.
Une droite est dite remarquable dans un triangle lorsqu'elle possède une ou plusieurs propriétés quel que soit le triangle. Il existe 4 types de droites remarquables dans le triangle : la médiane, la médiatrice, la hauteur et la bissectrice.
La médiane est le point milieu d'un jeu de données, de sorte que 50 % des unités ont une valeur inférieure ou égale à la médiane et 50 % des unités ont une valeur supérieure ou égale.
Les 3 médiatrices d'un triangle sont les médiatrices de chacun de ses côtés. Ces 3 médiatrices se coupent en un point qui est le centre du cercle circonscrit au triangle.
La distance d'un point à une droite correspond à la longueur du plus court segment séparant le point de la droite. Pour déterminer la distance qui sépare un point d'une droite, il faut déterminer la longueur du segment qui joint perpendiculairement le point à la droite.
Dans un triangle, les médiatrices des trois côtés sont concourantes en un point qui est le centre du cercle circonscrit de ce triangle. La médiatrice d'un segment est un axe de symétrie de ce segment.
Angle aigu désigne, dans le domaine de la géométrie, un angle saillant inférieur dont la mesure est comprise entre 0° et 90°. Exemple : Le contraire d'un angle aigu est un angle obtus, sa mesure est donc supérieure à 90°.
Définition : dans un triangle, la hauteur d'un côté est la droite qui est perpendiculaire au côté et qui passe par le sommet opposé. On dit aussi la hauteur issue d'un sommet.
Propriété : Si une droite partage un angle en deux angles adjacents égaux alors c'est la bissectrice de l'angle. Propriété : Si un point est équidistant des deux côtés d'un angle alors il appartient à la bissectrice de l'angle.
et donc : ℓ=aba+b×2cosα.
Méthode avec un compas et une règle
Placer la pointe sèche du compas sur une extrémité du segment et tracer un cercle. Répéter l'étape 2 à partir de l'autre extrémité du segment. À l'aide d'une règle, tracer la droite qui relie les deux intersections des cercles. Cette droite est la médiatrice du segment.
En géométrie, un cercle circonscrit à un polygone est un cercle qui passe par tous les sommets du polygone. Le polygone est alors dit inscrit dans le cercle : on parle de polygone inscriptible ou parfois de polygone cyclique. Les sommets sont alors cocycliques, situés sur un même cercle.
Les deux droites reliant un sommet au milieu de chaque médiane issue des deux autres sommets, coupent le côté opposé en trois parts égales. La plus grande ellipse inscrite dans un triangle (ellipse de Steiner) est tangente aux côtés du triangle aux pieds des médianes.
Triangle dont aucun côté n'est égal à un autre.
La bissectrice d'un angle est la droite qui partage un angle en deux angles de même mesure. La bissectrice d'un angle peut également être définie comme l'ensemble des points à égale distance des deux côtés de l'angle.
Les trois médianes d'un triangle sont concourantes en un point appelé le centre de gravité du triangle. Dans un triangle, une hauteur est une droite qui passe par un sommet et qui est perpendiculaire au côté opposé.
Orthocentre. Les trois hauteurs d'un triangle sont concourantes. Leur point d'intersection H, est nommé orthocentre du triangle. On considère l'homothétie de centre le centre de gravité du triangle et de rapport –2.