Le test repose sur une loi exacte plutôt que sur une approximation de la loi du Khi deux utilisée pour les tests de Pearson et de rapport de vraisemblance. Le test exact de Fisher est utile lorsque les dénombrements de cellules attendus sont faibles et que l'approximation du Khi deux n'est pas très bonne.
Le test du Khi2 peut être employé si tous les effectifs théoriques sont >5. Si au moins un effectif théorique est <5 alors, le test du Khi2 avec correction de Yates, ou bien le test exact de Fisher doivent être employés.
Quelles sont mes possibilités ? Si vous n'avez qu'une seule variable de mesure, vous utilisez untest du khi-deux de qualité de l'ajustement. Si vous avez deux variables de mesure, vous utilisez un test du khi-deux d'indépendance. Il existe d'autres tests du khi-deux, mais ces deux-là sont les plus courants.
Le test exact de Fisher calcule la probabilité d'obtenir les données observées (en utilisant une distribution hypergéométrique) ainsi que les probabilités d'obtenir tous les jeux de données encore plus extrêmes sous l'hypothèse nulle. Ces probabilités sont utilisées pour calculer la p-value.
Le test du chi-carré est un moyen statistique de déterminer les différences entre ce qui était attendu et ce qui a été observé dans une ou plusieurs catégories. Les chercheurs utilisent ce test non paramétrique pour comparer des variables catégorielles au sein d'un même échantillon de population.
Plus la valeur de la statistique du khi-carré est élevée, plus la différence entre les effectifs de cellules observés et théoriques est importante, et plus il apparaît que les proportions de colonne ne sont pas égales, que l'hypothèse d'indépendance est incorrecte et, par conséquent, que les variables Situation d' ...
Le calcul des ces effectifs se fait de la manière suivante : total de la ligne concernée x total de la colonne concernée /total général, soit sur le détail ci- contre : 16,89=37 x 63 /138. On a arrondi à 2 décimales.
Le test U de Mann-Whitney est donc le pendant non paramétrique du test t pour échantillons indépendants ; il est soumis à des hypothèses moins strictes que le test t. Par conséquent, le test U de Mann-Whitney est toujours utilisé lorsque la condition de distribution normale du test t n'est pas remplie.
L'équation se présente sous la forme MV = PT dans laquelle : M est la quantité de monnaie en circulation dans l'économie; V est sa vitesse de circulation; P est le niveau des prix; T est le volume des transactions c'est-à-dire la quantité de biens échangés contre de la monnaie durant la période considérée.
Le test de Friedman est un test statistique non paramétrique utilisé pour analyser des données à mesures répétées. Il est principalement utilisé lorsque les hypothèses de normalité et d'homogénéité des variances ne sont pas respectées, ce qui en fait une alternative solide à l'ANOVA à mesures répétées.
Dans la liste Statistiques, sélectionnez la statistique N % colonne, puis ajoutez-la à la liste Afficher. Cliquez sur Appliquer à la sélection. Dans la boîte de dialogue Tableaux personnalisés, cliquez sur l'onglet Statistiques de test. Sélectionnez Tests d'indépendance (Khi-deux).
Les trois tests de corrélation les plus utilisés sont ceux de Spearman, Kendall et Pearson. Les deux premiers sont des tests non-paramétriques que l'on peut également appliquer sur des variables qualitatives ordinales.
Pour le calcul de cette probabilité, TEST. KHIDEUX utilise la distribution χ2 avec un nombre approprié de degrés de liberté (dl). Si r > 1 et c > 1, alors dl = (r - 1)(c - 1). Si r = 1 et c > 1, alors dl = c - 1 ou si r > 1 et c = 1, alors dl = r - 1.
L'effet Fisher
La déflation produit donc l'effet de répartition inverse. Le taux d'intérêt réel de la dette, que doit réellement payer le débiteur, est alors égal au taux d'intérêt, moins l'inflation (r = i – π).
Une théorie keynésienne
Ses analyses économiques envisagent l'inflation modérée d'une manière positive. Pour Keynes, l'accroissement de la quantité de monnaie en circulation ne produira de l'inflation que si les capacités de production sont employées pleinement.
Pour Keynes, la monnaie n'est pas neutre, c'est-à-dire qu'elle n'est pas sans influence sur le fonctionnement de l'économie. Keynes explique que la monnaie peut être thésaurisée, c'est-à-dire conservée pour elle-même (par précaution ou par spéculation).
Le test de Wilcoxon compare deux séries ou groupes de données d'une même variable quantitative ou semi-quantitative. Il s'applique lorsque nous ne pouvons pas utiliser le test T de Student car les conditions de normalité des données ne sont pas validées.
En statistique, le test de Wilcoxon-Mann-Whitney (ou test U de Mann-Whitney ou encore test de la somme des rangs de Wilcoxon) est un test statistique non paramétrique qui permet de tester l'hypothèse selon laquelle les distributions de chacun de deux groupes de données sont proches.
Le test de Kruskal-Wallis est un test non paramétrique à utiliser lorsque vous êtes en présence de k échantillons indépendants, afin de déterminer si les échantillons proviennent d'une même population ou si au moins un échantillon provient d'une population différente des autres.
De fait, la distribution khi carré est la somme de carrés de N variables aléatoires dont l'espérance mathématique est distribuée conformément de la lois normale (Gauss). (m-1)(n-1) = DL. Or pour le tableau 2x2 le nombre de degrés de liberté est égale à (2-1)(2-1)=1.
Afin de déterminer si un échantillon est représentatif d'une population, on calcule l'intervalle I de fluctuation au seuil de 95% ainsi que la fréquence f dans l'échantillon. Si f \in I, alors l'échantillon est représentatif de la population.
Si la statistique-t est supérieure à la valeur critique, alors la différence est significative. Si la statistique-t est inférieure, il n'est pas possible de différencier les deux nombres d'un point de vue statistique.
Le test de corrélation est utilisé pour évaluer une association (dépendance) entre deux variables. Le calcul du coefficient de corrélation peut être effectué en utilisant différentes méthodes. Il existe la corrélation de Pearson, la corrélation tau de Kendall et le coefficient de corrélation rho de Spearman.