Calculer la longueur d'un segment dans un repère A B = ( x B − x A ) 2 + ( y B − y A ) 2 . C'est le théorème de Pythagore qui donne ce résultat.
On connaît la longueur L et le périmètre P d'un rectangle. Pour calculer sa largeur l : on calcule le demi-périmètre (P ÷ 2), puis on soustrait la longueur L au demi-périmètre.
Les longueurs sont généralement mesurées à l'aide de l'unité mètre (m), de ses multiples et ses sous-multiples : Le kilomètre (km) est égal à 1 000 mètres. L'hectomètre (hm) est égal à 100 mètres. Le décamètre (dam) est égal à 10 mètres.
Calcul d'une longueur dans un rectangle
L'aire d'une plaque rectangulaire est de 3,375 m2, sa largeur mesure 45 cm. Quelle est sa longueur ? On doit convertir l'aire en cm2 : 3,375 m2 = 33 750 cm2. La longueur L en cm est alors solution de l'équation : 45 × L = 33 750.
Théorème de Thalès (appliqué au triangle)
D'après le théorème de Thalès, si les droites (BC) et (MN) sont parallèles, alors on a l'égalité : \frac{AM}{AB} = \frac{AN}{AC} =\frac{MN}{BC}.
D'après le théorème de Thalès, on a AB AM = AC AN = BC MN , soit 3 7 = AC 4 = BC MN . On utilise la propriété des produits en croix pour calculer la longueur demandée. Calcul de AC : 7 × AC = 3 × 4 soit AC = 3 × 4 7 = 12 7 donc AC = 12 7 cm. Exemple 2 : Sur la figure ci-contre, les droites (CD) et (HT) sont parallèles.
Théorème de Pythagore : Si un triangle est rectangle, alors le carré de la longueur de l'hypoténuse est égal à la somme des carrés des longueurs des deux autres côtés. Avec les notations du triangle ABC rectangle en A, on a BC2=AB2+AC2.
Théorème de Pythagore :
Si un triangle est rectangle , alors le carré de la longueur de son hypoténuse est égal à la somme des carrés des longueurs des deux autres côtés. Exemple 1 : Soit le triangle ABC rectangle en A ([BC] est donc l'hypoténuse), alors BC²=AC²+BA².
En utilisant le théorème de Pythagore : Si un triangle est rectangle, alors le carré de l'hypoténuse est égal à la somme des carrés des côtés de l'angle droit. Si ABC est un triangle rectangle en A, alors BC² = AB² + AC². En utilisant le cosinus, le sinus ou la tangente d'un angle aigu d'un triangle rectangle.
Les mesures d'une surface ou d'un volume sont généralement données dans un ordre déterminé : longueur × largeur (× hauteur) ou largeur (× profondeur) × hauteur. Entre les mesures, on emploie la préposition sur, et non par.
Théorème de Pythagore : Dans un triangle ABC rectangle en A, on a BC2=AB2+AC2. On peut réécrire cette égalité en AB2=BC2−AC2 pour déterminer la longueur AB ou en AC2=BC2−AB2 pour déterminer la longueur AC.
Pour obtenir 1 cm, il faut 10 mm. Pour obtenir 1 dm, il faut 100 mm. Pour obtenir 1 dm, il faut 10 cm. Voici quelques objets qui mesurent environ un décimètre : un stylo, un paquet de mouchoirs en papier, un moineau, une limace...
En géométrie plane, la largeur est la plus petite des deux mesures d'un rectangle ; l'autre mesure, de taille plus importante, est nommée longueur. Le symbole de la largeur est « l » (lettre « l » minuscule) ; le symbole de la longueur est « L » (lettre « L » majuscule).
Définition Calcul de la largeur
Pour calculer la largeur du rectangle à partir du périmètre, on recherche d'accord le demi-périmètre puis on soustrait la longueur.
Dans le cas d'un terrain rectangulaire, il faut mesurer sa longueur et sa largeur, puis les multiplier.
A = 2 × (L × l + L × h + l × h) ou A = 2Ll + 2Lh + 2lh.
On les note généralement avec les lettres "a" et "b" Formule : Le théorème de Pythagore énonce que la somme des carrés des longueurs des côtés adjacents est égale au carré de la longueur de l'hypoténuse. Cela se traduit mathématiquement par : a² + b² = c²
Calculer la longueur d'un cercle, c'est calculer son périmètre. C'est-à-dire 2 fois le rayon (r) multiplié par 3,14 (π = 3,14). Ex. : un cercle qui a un rayon de 5 cm a un périmètre de : 2 × 5 × 3,14 = 31,4 cm.
Comment calculer l'hypoténuse ? L'hypoténuse est le côté opposé de l'angle droit du triangle rectangle, le côté le plus long. Selon le théorème de Pythagore, le carré de l'hypoténuse est égal à la somme des carrés des longueurs des côtés à angle droit (les jambes).
b) Réciproque de Thalès.
Comme le théorème de Thalès est ainsi structuré : « Si des droites sont parallèles, alors des quotients de longueurs de segment sont égaux ». Sa réciproque ne peut être que de la forme : « Si des quotients de longueurs de segment sont égaux, alors des droites sont parallèles. »
Réciproque du théorème de Thalès
Montrer que les droites (AB) et (TE) sont parallèles. Les produits en croix sont égaux donc CD / AC = CE / BC. On sait également que les points A,D,C et B,E,C sont alignés dans le même ordre. Donc d'après la réciproque du théorème de Thalès (AB) et (DE) sont parallèles.
Quelle est la mesure du côté adjacent d'un triangle rectangle isocèle dont le périmètre est égal à 10 ? Approximativement 2,93. Pour arriver à ce résultat, on utilise la formule côté adjacent = périmètre/(2 + √2) . Comme 2 + √2 est égal à environ 3,41 , on obtient côté adjacent ≈ 10 / 3,41 ≈ 2,93 .
Théorème de Pythagore :
Si un triangle est rectangle , alors le carré de la longueur de son hypoténuse est égal à la somme des carrés des longueurs des deux autres côtés. Exemple 1 : Soit le triangle ABC rectangle en A ([BC] est donc l'hypoténuse), alors BC²=AC²+BA².
Théorème : Si le carré de l'hypoténuse est égal à la somme des carrés des deux autres côtés, alors le triangle est rectangle. Si le carré de l'hypoténuse n'est pas égal à la somme des carrés des deux autres côtés, alors le triangle n'est pas rectangle. I. Le théorème de Thales pour calculer une longueur - sens direct.
La réciproque du théorème Pythagore dit que « si un triangle est rectangle, alors le carré de la plus grande longueur (l'hypoténuse) est égale à la somme des carrés des longueurs des deux autres côtés ». La réciproque de Pythagore permet donc de montrer si un triangle est rectangle.