Commencez par remplir la première colonne (a puis b), puis la seconde colonne (c puis d). Selon la règle de proportionnalité, aussi appelée règle de trois, les produits des nombres en diagonale sont égaux soit a × d = b × c.
Deux grandeur sont proportionnelles si l'on passe de l'une à l'autre en multipliant toujours par le même nombre, qui s'appelle le coefficient de proportionnalité. A et B sont de grandeur et k un nombre , si A=k×B alors on dit que A est proportionnel à B et k est le coefficient de proportionnalité.
La proportionnalité est un principe efficace en ce sens qu'il permet à un juge d'examiner que « la peine est proportionnelle à la gravité de l'infraction et au degré de responsabilité du délinquant ». En théorie, il s'agit d'un excellent principe en théorie; toutefois, en pratique, il pose quelques problèmes.
Deux grandeurs sont proportionnelles si, lorsqu'on en multiplie une par un nombre non nul, l'autre est également multipliée par ce même nombre. Pour passer d'un prix en euros (première grandeur) à un prix en francs (deuxième grandeur) on multiplie chaque prix en euros par 6,55957.
Deux grandeurs sont proportionnelles quand on obtient les valeurs de l'une en multipliant par le même nombre – autre que 0 – toutes les valeurs de l'autre. Le nombre qui permet de passer d'une suite de nombres à l'autre s'appelle le « coefficient de proportionnalité ».
Exemple : dans un magasin, le prix des pommes est de 2 euros le kilogramme. Il y a proportionnalité entre la somme S à payer et le poids P de pommes achetées, avec un coefficient de proportionnalité égal à 2.
Il y a proportionnalité dans un tableau de nombres à deux lignes lorsque les nombres de la deuxième ligne s'obtiennent en multipliant ceux de la première par un même nombre que l'on appelle coefficient de proportionnalité. Le prix de cerises vendues 2,70 € le kilogramme est proportionnel à leur masse.
Dans un tableau de proportionnalité, on peut additionner les valeurs de deux colonnes pour obtenir celles d'une troisième colonne. Ainsi, en constatant que 5 = 2 + 3, on en déduit que la valeur de la deuxième ligne de la troisième colonne est la somme de 7 et de 10,7 soit 17,5.
Pour savoir si deux grandeurs sont proportionnelles, on peut faire le test suivant : lorsqu'on multiplie une grandeur par un nombre, si l'autre est multipliée par le même nombre, alors ces deux grandeurs sont proportionnelles.
La proportionnalité est une relation entre deux grandeurs. Ces deux grandeurs sont dites proportionnelles lorsqu'on peut multiplier ou diviser les valeurs de l'une par un même nombre non nul pour obtenir les valeurs de l'autre. Ce nombre s'appelle le coefficient de proportionnalité.
Deux grandeurs sont proportionnelles si, lorsqu'on en multiplie une par un nombre non nul, l'autre est également multipliée par ce même nombre. Max a acheté 1 croissant pour 1,02€. Pour en acheter 3, il devra payer 3 fois plus cher, c'est-à-dire, 3×1,02=3,06 €. Le prix est proportionnel au nombre de croissants achetés.
Situation de proportionnalité :
Deux grandeurs sont proportionnelles lorsque les valeurs de l'une sont obtenues en multipliant les valeurs de l'autre par un même nombre non nul appelé coefficient de proportionnalité. On dit alors qu'il y a situation de proportionnalité.
Une proportion correspond au rapport mathématique entre une partie et un ensemble : on l'obtient en divisant la partie par l'ensemble. Le pourcentage de répartition est égal à la proportion exprimée en %. Pour lire un pourcentage de répartition, il faut préciser l'ensemble par rapport auquel il est calculé.
Dans la ligne qui contient la case vide, on effectue l'addition horizontale des 2 mêmes colonnes pour trouver le nombre manquant. Dans la ligne du bas, on additionne les nombres des 2 premières colonnes (3 + 42) pour obtenir le nombre manquant (45).
Les pourcentages
Un pour cent (ou 1 %) correspond au centième du total ou de l'ensemble, de sorte qu'il est obtenu en divisant le total ou le nombre entier par 100. 70 exprimé en % de 250 = (70 x 100) ÷ 250 = 28 %. Pour calculer la différence de pourcentage entre deux nombres, on utilisera les mêmes calculs de base.
Deux grandeurs sont proportionnelles si, lorsqu'on en multiplie une par un nombre non nul, l'autre est également multipliée par ce même nombre.
Deux variables sont dites directement proportionnelles, ou en proportionnalité directe, si leur quotient est constant. Ce type de relation est souvent noté 𝑦 ∝ 𝑥 . Comme leur quotient est constant, on a 𝑦 𝑥 = 𝑚 pour 𝑥 ≠ 0 et une constante 𝑚 ≠ 0 , où 𝑚 est appelé coefficient de proportionnalité.
Deux grandeurs (ou deux suites de nombres) sont dites proportionnelles si l'on peut passer de l'une à l'autre en multipliant par un même nombre non nul. Ce nombre s'appelle coefficient de proportionnalité.
Propriété : Dans un tableau de proportionnalité, il y a égalité des produits en croix. Si a c b d est un tableau de proportionnalité, alors a b = c d , donc a × d = b × c. Tout graphique dont les points sont alignés avec l'origine du repère, représente une situation de proportionnalité.
Le coefficient multiplicateur permet d'étudier l'évolution de la valeur d'une variable entre deux dates. Ainsi, il est obtenu en divisant la valeur d'arrivée par la valeur de départ. S'il est supérieur à 1, le coefficient multiplicateur traduit une augmentation.
Retenir Deux grandeurs sont proportionnelles si on peut obtenir toutes les valeurs de l'une en multipliant celles de l'autre par un même nombre non nul. Elles varient toujours dans la même proportion.
Un tableau est un tableau de proportionnalité si on passe d'une ligne à l'autre en multipliant (ou en divisant) par un même nombre.
Un tableau traduit une situation de proportionnalité lorsque l'on obtient les nombres de la deuxième ligne en multipliant les nombres correspondants de la première ligne par un même nombre. (Dans cet exemple ce nombre est 2,5 car 5/2 = 2,5 ; 7,5/3 = 2,5 ; 10/4 = 2,5 ; …).
On distinguera deux types de situations de proportionnalité : les situations directement proportionnelles et les situations inversement proportionnelles.