L'énoncé de l'hypothèse de Riemann généralisée est le suivant : Pour tout caractère de Dirichlet χ, si s est un nombre complexe tel que L(χ, s) = 0 et si sa partie réelle est strictement comprise entre 0 et 1, alors elle vaut en fait 1/2.
Problème non résolu
Malgré l'importance de cette conjecture, aucune piste de résolution n'a fait beaucoup de progrès jusqu'à présent. Seuls les mathématiciens les plus aguerris – souvent ceux qui ont déjà des résultats majeurs et des récompenses à leur actif – admettent publiquement avoir essayé de la résoudre.
Riemann affirma que les zéros non triviaux ne peuvent se trouver qu'au milieu de la bande critique, c'est-à-dire sur la droite critique ; autrement dit, les zéros non triviaux ont pour partie réelle 1/2. C'est cette assertion qui constitue la conjecture de Riemann.
conjecture de Hodge. hypothèse de Riemann. existence de la théorie de Yang-Mills avec un gap de masse. existence et propriétés de solutions des équations de Navier-Stokes.
Sept millions de dollars de récompense incitent ainsi les mathématiciens à travailler sur les sept problèmes suivants : l'hypothèse de Riemann, la conjecture de Birch et Swinnerton-Dyer, le problème P versus NP, le problème de l'écart de masse des équations de Yang-Mills, la conjecture de Poincaré, le problème de l' ...
Pierre de Fermat et Andrew Wiles. Le « dernier théorème de Fermat » (ou « grand théorème de Fermat », ou « théorème de Fermat-Wiles ») affirme que si n est un entier supérieur à 2, alors il n'existe pas de triplets d'entiers positifs x, y, z tels que xn + yn = zn. Il est considéré comme démontré depuis 1995.
L'hypothèse de Riemann, un problème irrésolu
Les énigmes de maths passionnent les gens depuis des générations ! Ce problème est considéré par de nombreux mathématiciens comme l'un des plus difficiles de tous les temps. Et en effet, l'hypothèse de Riemann n'a jamais été résolue !
Question d'origine : Quelle est la question mathématique qui semble facile, mais est difficile en réalité ? La conjecture de Goldbach : Tout nombre pair (au moins égal à 4) est la somme de deux nombres premiers. Tout nombre impair (au moins égal à 7) est la somme de trois nombres premiers.
Portrait de l'homme qui a résolu la conjecture de Poincaré, paru dans le Nouvel Observateur le 16 juin 2010. Dans le monde merveilleux des matheux. Grigori Perelman a résolu l'un des sept problèmes du millénaire : la conjecture de Poincaré. Le Russe, terré chez lui, décline toutes récompenses et interviews.
L'équation « x2 = –5 » est impossible, car aucun nombre élevé au carré ne peut donner –5 comme résultat.
Tout nombre non nul élevé à la puissance 0 donne 1 par convention. Mais 0^0 est une forme indéterminée. Par exemple la limite de x^x est de la forme 0^0 quand x→0 (sans atteindre 0). Cette limite vaut 1.
Selon du Sautoy, l'astronome et mathématicien de l'Antiquité Brahmagupta est le premier à avoir employé le zéro. « Le texte de Brahmagupta intitulé Brahmasphutasiddhanta et écrit en 628 après J. -C.
La graphie du zéro, d'abord un cercle, est inspirée de la représentation de la voûte céleste. Comme l'indique l'étymologie, son introduction en Occident est consécutive à la traduction de mathématiques arabes, notamment les travaux d'al-Khwārizmī, vers le VIII e siècle.
VIDÉO - L'illustre Sir Michael Atiyah, détenteur de la médaille Fields et du prix Abel, assure avoir démontré «l'hypothèse de Riemann», vieille de 160 ans et identifiée comme l'un des sept problèmes du millénaire par l'Institut Clay qui offre un million de dollars pour sa résolution.
Le zéro est alors appelé sunya ce qui signifie le vide. Au XIIe siècle, le mathématicien indien Bhaskara parvient à établir que 1/0 = l'infini. Il démontre ainsi, la relation qui existe entre le vide et l'infini. Au IXe siècle, les Arabes emprunteront aux Indiens le zéro, le mot sunya devenant sifr.
La résolution de l'hypothèse de Riemann avait en effet été mise à prix : un million de dollars par le Clay Mathematics Institute de Cambridge.
La conjecture de Syracuse – ou encore de Collatz –, un problème mathématique à l'énoncé élémentaire, défie les chercheurs depuis plus de quatre-vingts ans. Elle vient cependant de connaître une avancée importante grâce au mathématicien Terence Tao.
L'Antiquité et l'invention des maths
-C., vont faire de cette discipline plus qu'un outil, un idéal de pensée. C'est généralement à Thalès de Milet que l'on accorde la paternité de la géométrie, et le début des mathématiques grecques.
Mihoubi Douadaurait ainsi consacré de nombreuses années de recherche et de travail acharné pour arriver à résoudre ce problème arithmétique vieux de 281 ans. Sa passion pour les mathématiques l'a conduit à s'immerger dans cette conjecture complexe et à explorer de nouvelles approches pour la résoudre.
Voici quelques exemples d'équations impossibles :
x + 1 = x Cette équation est impossible car quelle que soit la valeur de x, on ne peut jamais obtenir l'égalité. En soustrayant x des deux côtés, on obtient 1 = 0, ce qui est une contradiction.
La fonction exp prend en 1 une valeur notée e, qui vaut environ 2,718 et est un nombre transcendant.
Les États et territoires dont les élèves possèdent les niveaux en mathématiques les plus élevés sont Singapour, Macao, Taïwan, Hong Kong et le Japon. Les pays les moins performants en mathématiques sont le Cambodge, le Paraguay, la République dominicaine, le Salvador et le Guatemala.
On y découvre que les Chinois avaient développé des méthodes de calcul et de démonstration qui leur étaient propres : arithmétique, fractions, extraction des racines carrées et cubiques, mode de calcul de l'aire du disque, volume de la pyramide et méthode du pivot de Gauss.
Pour multiplier par 4, vous pouvez multiplier par 2 puis multiplier ce nouveau résultat par 2. Par exemple, 36 x 4 = 36 x 2 x 2 = 72 x 2 = 144. Pour multiplier par 10, c'est très simple, surtout quand cela concerne un nombre entier, il suffit de rajouter un zéro derrière le dernier chiffre comme dans 128 x 10 = 1280.